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A B S T R A C T

Force transmission between solid and fluid phases in fluid-saturated granular systems is yet to be
fully resolved. This is rooted in our inability to measure inter-particle forces in opaque systems
in the presence of fluids. At the same time, the concept of effective stress was introduced by Karl
Terzaghi a century ago, but this empirical approach is yet to be linked to grain-scale phenomena
experimentally. To this end, we derive an expression for the effective stress based on inter-
particle forces and use a hybrid optical–mechanical method to directly measure the evolution of
inter-particle forces and effective stress, offering a new perspective on how forces are distributed
between solid and fluid phases. While our derivation and measurement of effective stress focuses
on the limiting case of the Terzaghi stress, the methodology presented herein could be extended
to more general situations, such as unsaturated conditions, where the micro-mechanical origin
of effective stress remains elusive.

. Introduction

Capturing the mechanical coupling between solids and fluids, trapped in the interstitial spaces, is pivotal for unraveling the
omplex behavior of a large number of natural and anthropogenic systems ranging from earthquakes to batteries to cells (Faunt et al.,
016; Smith and Montgomery, 2015; Odell et al., 1980; Christensen, 2010; Jiang and Lapusta, 2016; Rice et al., 2014; Cappa et al.,
019). Subsidence, a well-known phenomenon produced by depletion of underground fluids (e.g., water, oil, natural gas) (Faunt
t al., 2016), occurs as mass and pressure of the interstitial fluids decrease in geologic formations giving rise to inter-granular stresses
riving the deformation process. Hydraulic fracturing is driven by rapid pressure increase of interstitial fluids, exploiting natural
r engineered flaws that propagate into fractures within the solid rock formation (Smith and Montgomery, 2015). In epithelial
orphogenesis, cell rearrangement accompanying gastrulation is modulated by the oozing out of fluid filling the (solid) blastocoel

s a result of pressure exerted by the invagination process (Odell et al., 1980). Lithium-ion batteries undergo significant expansion
f its electrode materials (e.g., graphite, silicon) during charging/discharging cycles due to intercalation of lithium ions inducing
ractures in the electrode and adversely impacting electrolyte transport (Christensen, 2010). In earthquake nucleation models, the
oupling between stresses in the solid and pore fluid pressure is central for explaining observed phenomena such as depth of large
arthquakes, flash heating, and fluid-induced seismicity, among others (Jiang and Lapusta, 2016; Rice et al., 2014; Cappa et al.,
019). For instance, Fig. 1 shows the classic example of consolidation of the Mexico City’s Metropolitan Cathedral, which has settled
n excess of 2.4 m as the total stress 𝝈 from the weight of the cathedral structure is transferred from the interstitial fluid to the solid
keleton (Ovando-Shelley et al., 1997). To this end, the effective behavior of such poromechanical systems across spatiotemporal
cales depends intimately on the force transmission and evolution of stress partitioning between solid and fluid phases.
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Fig. 1. The Metropolitan Cathedral in Mexico City furnishes a classic example of consolidation phenomena where the effective stress plays a central role. Since
the erection of the cathedral in 1573, the total stress 𝝈 from the cathedral’s structure has been shifting from the pore fluid pressure 𝑝 to the effective stress 𝝈′

carried by the solid skeleton. Inset shows schematic of fully saturated granular mixture occupying a total volume 𝑉 and withstanding a total stress 𝝈 which at
any given time is split between the solid and the fluid phases occupying volumes 𝑉𝑠 and 𝑉𝑓 , respectively.

For a partially or fully saturated porous system in mechanical equilibrium, such as those mentioned above, the external load
is carried by a combination of induced forces in both the solid domain (volume 𝑉𝑠) and fluid domain (volume 𝑉𝑓 ). However, the
contribution of each phase, as a function of time, in this joint effort of maintaining mechanical equilibrium depends on a variety of
factors (e.g., elasticity of the solids, viscosity of fluids, intrinsic permeability, etc.). One of the earliest attempts to explore this was
in the 1920s by Karl Terzaghi, who dealt with this question in the context of clay deposits (Terzaghi, 1925), much like those under
the cathedral in Fig. 1. He introduced the concept of effective stress 𝝈′, and defined it as the portion of the total stress 𝝈 that was
carried by the solid phase or skeleton i.e.,

𝝈 = 𝝈′ + 𝑝𝟏 (1)

with 𝑝 being the pore fluid pressure and 𝟏 signifying the identity tensor. Terzaghi’s definition of effective stress is as powerful as it is
simple, intuitively connected to the balance of forces and empirical models. This gave birth to the field of soil mechanics and formed
the basis for what is now known as poromechanics (Coussy, 2004). Over the years, significant progress has been made in capturing
the physics of fluid–solid interactions induced by a variety of complex physico-chemical phenomena at the pore scale (Coussy,
2004) by appealing to the continuum framework provided by Biot (1941) and the close-to-equilibrium thermodynamic framework
of irreversible deformation proposed by Coussy (2004). Other efforts rooted in thermodynamics have shed light on the effective
stress by showing it to be stress-conjugate to the total strain (Borja, 2004). However, the concept of effective stress, at the core
of all these advances and outlined applications, remains empirical and rooted in phenomenological models (e.g., the Kelvin–Voigt
model Simo and Hughes, 2006). Simultaneously, significant progress has been made in granular physics, particularly in measuring
inter-particle forces in dry materials (Majmudar and Behringer, 2005; Daniels et al., 2017) and fully-saturated photoelastic granular
systems (Ladd and Reber, 2020; Mahabadi and Jang, 2017). Nonetheless, the grain-scale origin of Terzaghi’s effective stress and
the measurement of inter-granular forces in opaque media and in the presence of fluids have remained elusive, hindering direct
validation of the effective stress concept. Current methods indirectly infer the effective stress 𝝈′ by direct measurements of the total
stress 𝝈 and pore fluid pressure 𝑝, and utilizing Eq. (1).

Our work hinges on the derivation of the grain-scale nature of the Terzaghi effective stress and its direct measurement. As such,
this work focuses on the limiting case of applicability of the Terzaghi stress to fluid-saturated solid particle mixtures, namely:

• Fully saturated, quasi-static conditions
• Incompressible solid (particles) and fluid constituents
• Solid particles with nonconforming (point) contact

Notwithstanding these caveats, in this work we aim to answer three related, but separate fundamental questions: (1) What is
the grain-scale meaning of the effective stress 𝝈′ as defined by Terzaghi; can it be measured directly? (2) How is a macroscopic
2
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variable, e.g., 𝝈′, related to grain-scale forces? (3) How do grain-scale forces and stresses evolve with time in fluid-saturated systems?
nswering these questions is central to understanding force transmission in fluid saturated granular systems, its relationship with
ffective stresses and ultimately mechanical behavior in a range of applications such as those mentioned above.

. Methods

This section summarizes three key ingredients used to directly measure the Terzaghi effective stress 𝝈′: (i) theoretical derivation
of the effective stress as a function of the intergranular forces, (ii) a simple 1D consolidation model for validating the experimental
setup, and (iii) the experimental setup and measurements for computing the effective stress under classic 1D consolidation.

2.1. Derivation of effective stress as a function of intergranular forces

Our point of departure from the conventional approach is the well-established volume average of the stress (i.e., 𝝈̄ ∶=
1∕𝑉 ∫𝑉 𝝈 (𝒙) d𝑉 ) in a fully-saturated granular system of total volume 𝑉 as shown in the inset in Fig. 1. The classic additive
decomposition of partial stresses states (Andrade and Borja, 2007):

𝝈̄ = 𝝈̄𝑠 + 𝝈̄𝑓 (2)

where each partial stress is simply the volume average of the (true) stress field in the corresponding phase occupying a volume 𝑉𝑠
for the solid and 𝑉𝑓 for the fluid. The additive decomposition of partial stresses is a classic result in poromechanics and does not
require any phenomenological or intuitive assumptions (Andrade and Borja, 2007; Borja, 2004; Atkin and Craine, 1976; Prevost,
1980). Further, assuming constant pore fluid pressure, one can show that 𝝈̄𝑓 = 𝜙𝑓 𝑝𝟏, hence:

𝝈̄ = 𝝈̄𝑠 + 𝜙𝑓 𝑝𝟏 (3)

where 𝜙𝑓 ∶= 𝑉𝑓∕𝑉 is the volume fraction occupied by the fluid phase, which in the fully-saturated condition coincides with the
porosity. By comparing Eq. (2) and the definition of effective stress given by Terzaghi in Eq. (1), one can obtain a relation between
the effective stress and the partial solid stress, i.e., 𝝈′ = 𝝈̄𝑠 − 𝜙𝑠𝑝𝟏, where 𝜙𝑠 ∶= 𝑉𝑠∕𝑉 is the volume fraction of the solid and
𝑠 + 𝜙𝑓 = 1. It is important to note that this latter result is not a grain-scale definition of the effective stress and simply follows by
omparison.

In order to find a grain-scale definition of Terzaghi’s effective stress 𝝈′, let us consider a granular medium, such as the one
escribed at the end of the Introduction, with 𝑁 solid particles, fully saturated and in equilibrium with an incompressible interstitial
luid, as shown in Fig. 2A, B. For particle 𝑖, conservation of Euler’s linear and angular momenta yields:

∑𝑁𝑐
𝑖

𝛼=1
𝒇 𝛼 = 𝟎 (4)

∑𝑁𝑐
𝑖

𝛼=1
𝒇 𝛼 × 𝒙𝛼 = 𝟎 (5)

here 𝒇 𝛼 is a contact (external) force at contact point 𝒙𝛼 with 𝑁𝑐
𝑖 contact points acting on particle 𝑖 (see Fig. 2C). Here we assume

hat the fluid is in equilibrium at a constant pore pressure 𝑝 with its surface integral vanishing and not contributing to angular
momentum. Similarly, (pointwise) balance of linear momentum in particle 𝑖 reads:

𝛁 ⋅ 𝝈𝑖(𝒙) = 𝟎 ∀𝒙 ∈ 𝛺𝑖 (6)

Where 𝝈𝑖(𝒙) denotes the stress field in particle 𝑖 with its domain delineated by 𝛺𝑖. For a fully saturated system, composed of solid
(𝛺𝑠) and fluid (𝛺𝑓 ) domains, the total average stress can be written as follows:

𝝈̄ ∶= 1
𝑉 ∫𝑉

𝝈(𝒙) d𝑉 ; 𝝈(𝒙) =

{

𝝈𝑓 (𝒙) ∀𝒙 ∈ 𝛺𝑓
𝝈𝑠(𝒙) ∀𝒙 ∈ 𝛺𝑠 (𝛺𝑖 ⊂ 𝛺𝑠)

(7)

We denote the (true) average stress within the solid and fluid domains as 𝝈̄𝑠 and 𝝈̄𝑓 , respectively, and Eq. (7) can be written as (cf.
Eq. (2)):

𝝈̄ = 1
𝑉
(𝑉𝑠𝝈̄𝑠 + 𝑉𝑓 𝝈̄𝑓 ) = 𝜙𝑠𝝈̄𝑠 + 𝜙𝑓 𝝈̄𝑓 = 𝝈̄𝑠 + 𝝈̄𝑓 (8)

where 𝑉𝑠 and 𝑉𝑓 are the volumes of the solid and fluid phases, 𝜙𝑠 and 𝜙𝑓 are the corresponding volume fractions occupied by the
two phases. The multiplication of the volume fraction and the corresponding (true) average stress is known as the partial stress,
denoted as 𝝈̄𝑠 and 𝝈̄𝑓 , respectively. In a fluid, it can be shown that 𝝈𝑓 (𝒙) = 𝑝(𝒙)𝟏. Also, if pore pressure 𝑝(𝒙) = 𝑝 (constant), the
average stress of the fluid phase is:

𝝈̄𝑓 = 1
𝑉𝑓 ∫𝑉𝑓

𝑝(𝒙)𝟏 d𝑉𝑓 = 𝑝𝟏 (9)

urthermore, the average stress of the solid phase can be expressed as:

𝝈̄𝑠 =
1

𝑁
∑

∫ 𝝈𝑖(𝒙) d𝑉𝑖 =
1

𝑁
∑

𝑉𝑖𝝈̄𝑖 (10)
3
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Fig. 2. Hybrid optical–mechanical approach to establish the relation between effective stress and inter-particle forces. (A) The experimental cell (quasi-2D) where
a total vertical stress 𝜎𝑦𝑦 is imposed. The drainage process is controlled via a valve and the fluid pore pressure 𝑝 is measured with a pressure sensor located
at the bottom right corner of the cell. (B) An example of the developed force chains (black lines, whose thickness relates to magnitude and direction is coaxial
to inter-particle forces) for a given configuration utilizing the Granular Element Method (GEM) based on strains obtained from Digital Image Correlation (DIC)
analysis. This allows measurement of the inter-particle forces in the solid phase and, consequently, effective stress tensor via Eq. (15), previously inaccessible
in saturated granular systems. (C) Theoretical backbone of the framework linking inter-particle forces 𝒇 𝛼 , at the 𝛼-contact point, and branch vector 𝓵𝛼 to the
effective stress in the solid (Christoffersen et al., 1981), averaging over a volume 𝑉 .

where 𝑉𝑖 denotes volume associated with domain 𝛺𝑖,
∑𝑁

𝑖=1 𝑉𝑖 = 𝑉𝑠 and 𝝈̄𝑖 represents the volume-average stress of particle 𝑖. For a
discrete system in equilibrium, employing Eq. (6) and the divergence theorem in the expression of 𝝈̄𝑖 yields (Christoffersen et al.,
1981):

𝝈̄𝑖 =
1
𝑉𝑖 ∫𝑆𝑖

sym (𝒕⊗ 𝒙) d𝑆𝑖 =
1
𝑉𝑖

⎧

⎪

⎨

⎪

⎩

𝑁𝑐
𝑖

∑

𝛼=1
sym (𝒇 𝛼 ⊗ 𝒙𝛼) + ∫𝑆𝑖

𝒏̂ ⋅ (𝑝(𝒙)𝟏⊗ 𝒙) 𝑑𝑆𝑖

⎫

⎪

⎬

⎪

⎭

(11)

where 𝒕 is the traction at point 𝒙, with 𝒙 ∈ 𝑆𝑖, and 𝑝(𝒙) is the pore fluid pressure acting on the surface 𝑆𝑖, whose point-wise normal
vector is 𝒏̂(𝒙). The symbol ‘sym’ signifies the symmetric operator. We have also utilized the standard assumption that forces 𝒇 𝛼 are
applied pointwise at location 𝒙𝛼 , see Fig. 2C. Again, given a constant pore pressure 𝑝(𝒙), employing the divergence theorem into
the fluid pressure term, the average stress 𝝈̄𝑖 can be further written as:

𝝈̄𝑖 =
1
𝑉𝑖

𝑁𝑐
𝑖

∑

𝛼=1
sym(𝒇 𝛼 ⊗ 𝒙𝛼) + 𝑝𝟏 (12)

Substituting equation Eq. (12) into (10), and then Eq. (9) and (10) into Eq. (8) leads to a new expression of the total average stress
𝝈̄:

𝝈̄ = 1
𝑉

𝑁𝑐
∑

𝛼=1
sym(𝒇 𝛼 ⊗ 𝓵𝛼) + (𝜙𝑠 + 𝜙𝑓 )𝑝𝟏 (13)

where 𝑁𝑐 is the number of contacts in the entire domain and 𝓵𝛼 is the branch vector connecting the centroid of the particles in
contact at contact point 𝛼, as shown in Fig. 2C. Furthermore, 𝛺 = 𝛺𝑠 ∪ 𝛺𝑓 (𝛺𝑠 ∩ 𝛺𝑓 = ∅) constitutes the entire domain of the
mixture. Additionally, partition of unity holds such that 𝜙𝑠 + 𝜙𝑓 = 1. Finally, the total average stress becomes:

𝝈̄ = 1
𝑉

𝑁𝑐
∑

𝛼=1
sym(𝒇 𝛼 ⊗ 𝓵𝛼) + 𝑝𝟏 (14)

Thus, the partial solid stress for a granular medium can be expressed as 𝝈̄𝑠 = 1∕𝑉
∑

𝛼 𝒇
𝛼 ⊗𝓵𝛼 +𝜙𝑠𝑝𝟏, where, as shown in Fig. 2,

the inter-particle forces 𝒇 𝛼 and branch vectors 𝓵𝛼 are defined at contact point 𝛼, and summed over the entire volume 𝑉 . Notice
4
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there is a contribution to the partial solid stress stemming from the pore fluid pressure and scaled by the solid volume fraction
𝜙𝑠 ∶= 𝑉𝑠∕𝑉 . Finally, Eq. (2) with the help of Eq. (14) can be written as:

𝝈̄ = 1∕𝑉
𝑁𝑐
∑

𝛼=1
sym(𝒇 𝛼 ⊗ 𝓵𝛼)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝝈̄′

+𝑝𝟏 = 𝝈′ + 𝑝𝟏 (15)

We recognize the term 𝝈̄′ as the drained stress expression obtained by Christoffersen et al. (1981) and shown schematically in Fig. 2C.
lso, comparing Eq. (15) with the Terzaghi expression in Eq. (1) we can see that they are form-identical and that the effective stress

𝝈′ ∶= 1
𝑉

𝑁𝑐
∑

𝛼=1
sym(𝒇 𝛼 ⊗ 𝓵𝛼) (16)

as a clear linkage to grain-scale properties such as forces and branch vectors; an intuitive, but heretofore unproven result.
or example, previous discrete element models for fluid-saturated granular media use Eq. (16) as the expression for effective
tress (Galindo-Torres et al., 2018; Kuhn and Daouadji, 2020), without derivation. We exploit this linkage to measure the forces at
he grain-scale in saturated granular media and thereby measure the effective stress directly for the first time, in the context of 1D
onsolidation, whose analytical solution is well-known.

emark 1. It is important to note that the expression obtained in Eq. (16) is form-identical to the expression obtained for the
auchy stress for dry (drained) granular systems and derived in previous seminal contributions (Rothenburg and Salvadurai, 1981;
hristoffersen et al., 1981). Hence the idea of granular forces contributing to macroscopic stress is not new. However, our work adds
o the previous body of work by looking into fluid saturated systems. All previous work has either focused on formal derivations of
auchy stress for dry systems or have applied the Cauchy stress as the effective stress without justification. Notwithstanding these

ormalisms, the main contribution of the current work is the use of Eq. (16) to measure the effective stresses directly.

emark 2. The assumption of constant pore pressure 𝑝 is compatible with the fluid being in equilibrium. However, in the classic
D consolidation problem shown in the next section, the pressure is homogeneous for most of the domain (cf. Eq (17)), except
ear the drainage boundary where the pressure profile drops. In the experiments described herein, the drainage valve near the
ottom is not fully open, allowing for measurable, non-zero pore pressures and a quasi-homogeneous pressure profile. Therefore, the
ctual conditions of the experiment are somewhat in between fully homogeneous pressures and those observed in the consolidation
roblem. This is one possible source of error in the results shown in Fig. 4A, especially early on in the consolidation process when
ore pressure carries the lion share of the total stress.

.2. Analytical solution of one-dimensional consolidation

The analytical solution corresponding to Terzaghi’s one-dimensional consolidation problem (Terzaghi, 1925) is well known and
an be obtained by considering a porous system composed of isotropic, linear poroelastic solid and for the asymptotic case that
orresponds to incompressible solids and fluids. To this end, one can solve for pressure and displacement fields. We utilize the
nalytical solution to validate our experimental data. The physical parameters controlling the 1D consolidation problem are the
onsolidation coefficient 𝑐𝑣 and constrained modulus 𝐸. Furthermore, the results can be written in dimensionless form (𝑡 = 𝑐𝑣𝑡∕(4𝐿2),
̄ = 𝑦∕𝐿):

𝑝(𝑦̄, 𝑡) = 𝜎𝑦𝑦
∑

𝑛∈{2𝑘+1|𝑘∈N}

4
𝑛𝜋

sin
( 𝑛𝜋

2
𝑦̄
)

exp
(

−(𝑛𝜋)2𝑡
)

(17)

𝑢(𝑦̄, 𝑡) = −
𝜎𝑦𝑦
𝐸

∑

𝑛∈{2𝑘+1|𝑘∈N}

8𝐿
(𝑛𝜋)2

[

cos( 𝑛𝜋
2
𝑦̄) − 1

]

[

exp(−(𝑛𝜋)2𝑡) − 1
]

(18)

inally, the settlement can be obtained from the displacements as follows:

𝑠(𝑡) = 1
𝐿
𝑢(𝑦̄ = 1, 𝑡) =

𝜎𝑦𝑦
𝐸

∑

𝑛∈{2𝑘+1|𝑘∈N}

8
(𝑛𝜋)2

[

exp(−(𝑛𝜋)2𝑡) − 1
]

(19)

where ∑

𝑛∈{2𝑘+1|𝑘∈N}
8

𝑛2𝜋2
= 1.

In this work, we obtained the constrained modulus 𝐸 by discrete element modeling of the drained system (see Appendix B), and
independently by taking the ratio of the total stress to the total strain observed in the experiments (cf., Fig. 4C), with 𝐸 ranging
from about 3.3–4.0 MPa; we fitted the consolidation coefficient since we did not have the true permeability of the system. As shown
in Fig. 4, we used 𝐸 = 3.49 MPa and 𝑐𝑣 = 304 × 10−6 m2/s to fit experimental values.

Remark 3. The dimensionless pressure in Eq. (17) and the settlement expression in Eq. (19) furnish analytical validation for
the experimental results provided in the next section. As can be seen, the constrained modulus 𝐸 affects the amount of maximum
settlement and the coefficient of consolidation 𝑐𝑣 scales the dimensionless time axis. Hence, at any point along the domain 𝑦 ∈ (0, 𝐿],
5

the pressure evolution in time can be plotted using Eq. (17).
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Fig. 3. (a) Experimental setup: 1. Loading frame, 2. Camera, 3. Fiber optic illuminator, 4. Pressure sensor, 5. Container, 6. Valve (not shown in the large picture,
shown in the inset). (b) Exploded view of the container: 1. #6-32 screws and washers, 2. Window bracket, 3. Transparent window, 4. Sidewalls, 5. #10-32 screws
and washers, 6. Piston chamber, 7. Piston cap, 8. Piston, 9. Box, 10. Branch tube fitting.

2.3. Experimental setup for fully saturated consolidation experiments

In this section, we describe the experimental device we developed to (i) physically model the 1D consolidation problem solved
in the previous section, (ii) validate the experimental setup by comparing our measurements with those obtained analytically, and
(iii) measure interparticle forces that enable us to directly measure effective stress using Eq. (16). The experimental set up shown
in Fig. 3A consists of a servo-hydraulic loading frame (MTS material test system, Model 358.10), load transducer (Model 11019), a
CCD camera (Nikon AF Nikkor 50 mm), a fiber optic illuminator (Cole-Parmer, Model 41500-50) with a diffuser, a pressure sensor
(OMEGA PX309-015GV), a valve (Push-to-Connect PVC On/Off valve, 1/4’’ OD tube) and a container that can hold a fully saturated
and pressurized granular packing.

The container, as shown in Fig. 3B, includes a box, a transparent window, a window bracket, two sidewalls, a piston, a piston
cap, a piston chamber, and a branch tube fitting. Since the shape of the box is complex and difficult to machine, the box, the window
bracket as well as the sidewalls were 3D printed using a Stratasys Connex3 Objet350 printer. The box was made of VeroWhitePlus,
while the window bracket and sidewalls were made of VeroBlackPlus. Additionally, the piston, the piston cap and the piston chamber
were machined out of delrin and delrin acetal AF resin rods. A polycarbonate plate was used as the transparent window to enable
optical imaging. Chemical-resistant Viton fluoroelastomer O-Rings were utilized to seal the whole setup and nylon socket head
screws were used to hold all the parts together. To facilitate free drainage, a chemical-resistant barbed tube fitting was placed on
the side of the box.

To study various configurations at the grain-scale, two types of multipurpose neoprene rubber rods were employed. These rod-
shaped particles are assumed to be linear elastic and incompressible, i.e., Poisson’s ratio ≈ 0.5. The material used for the large
particles (diameter = 20 mm, length = 25.4 mm) has a Young’s modulus of 55 MPa, and the material used for the small particles
(diameter = 7 mm, length = 25.4 mm) has a Young’s modulus of 21.5 MPa, which we independently measured. Additionally,
for these materials, the reported Coulomb friction coefficient is 𝜇 = 0.6 (Hurley et al., 2014). The granular packings used in the
experiments contain 6 large particles and 34 or 35 small particles. To achieve an appropriate grayscale speckle pattern for Digital
Image Correlation (DIC) analysis, white multi-surface paint was used to generate speckle patterns on the black rubber particles.

3. Results

As illustrated in Fig. 2, we use a hybrid optical–mechanical approach to measure inter-particle forces and, via Eq. (16), the
effective stress. To validate our approach, we reproduce the classic consolidation problem (Fig. 2A). This entails application of a
constant stress 𝜎𝑦𝑦 in the vertical direction, which is partitioned between the fluid pressure 𝑝 and the effective stress 𝜎′𝑦𝑦 carried
by the solid (Terzaghi, 1925). In the classic consolidation problem, the time evolution of the pore fluid pressure 𝑝̇ is modeled as
a parabolic partial differential equation (cf., Section 2.2). The effective stress is typically inferred as 𝜎′𝑦𝑦 = 𝜎𝑦𝑦 − 𝑝, never directly
measured experimentally—varying from zero at the beginning to the total stress at the end of the consolidation process. This indirect
estimation of the effective stress is a consequence of the lack of a grain-scale definition of effective stress and the inability to measure
inter-particle forces in the presence of fluids. Here, we independently measure the fluid pressure and the effective stress evolutions
in time and demonstrate that they account for the total applied stress, as postulated by Terzaghi and formalized in Eq. (16). With
this unprecedented access to local information at the grain scale, we are able to explain how inter-particle forces are distributed
in the presence of fluids and what controls the evolution of effective stress, questions that cannot be addressed using the current
approaches.
6
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𝜎

Fig. 4. Experimental results with the shaded region capturing the range of results for various granular configurations. (A) Evolution of total vertical stress
̄𝑦𝑦, fluid pressure 𝑝̄, and effective vertical stress 𝜎̄′

𝑦𝑦 as a function of consolidation ratio 𝑐. In contrast to previous studies, the evolution of effective stresses
is measured directly from the inter-particle forces (see Eq. (16) and Fig. 2). Shaded region of imposed stress represents standard deviation from desired stress
level. (B), (C) Comparison between the measured pore pressure 𝑝̄ and the settlement 𝑠, respectively, with their counterparts of the analytical solution (Eqs. (17)
and (19)) as a function of the consolidation ratio 𝑐 (𝐸 = 3.49 MPa and 𝑐𝑣 = 304 × 10−6 m2/s). Results serve as validation of the effective stress measurements
and the experimental setup: in (A) the total stress is approximately constant and additively decomposed between effective stress (measured) and pore pressure
(measured); in (B) the evolution of pore pressure 𝑝̄ measured at the bottom of the specimen corresponds to the pore pressure evaluated using Eq. (17); in (C)
the evolution of settlement measured in the specimens matches the settlement evaluated using Eq. (19).

To measure the inter-particle forces, we rely on the granular element method (GEM) (Hurley et al., 2014) developed by the
authors in the context of dry granular matter. We measure the strain in each rod-shaped particle using digital image correlation
(DIC) (Sutton et al., 2009). The transparent wall in the apparatus (Fig. 2) allows us to employ simple optical methods to measure
planar deformation, which is input into GEM to deduce the inter-particle forces. Other techniques of measuring average strains
(e.g., X-ray diffraction, confocal microscopy) in the particles could also be employed (Donald and Ravichandran, 2019; Hurley et al.,
2016). Thus, the effective stress and its evolution as a function of time is measured directly from inter-particle forces obtained from
GEM. The volume 𝑉 of the cell is important and it needs to be large enough such that the effective stress matches the imposed
external stress (Zohdi and Wriggers, 2005) (see Discussion section). Additionally, the apparatus (Fig. 2) is equipped with a pressure
gauge, located at the drainage orifice (Fig. 3A), to measure the fluid pressure as a function of time while the total stress is held
constant by externally applied servo-controlled load. The measured fluid pressure is assumed representative of the entire cell, which
is a good assumption under quasi-static conditions. In addition, the pore pressure is analytically evaluated using Eq. (17). A drainage
valve on the side of the apparatus allows for slow fluid transport and pressure diffusion leading to the consolidation process. This
in turn provides direct access to the physics of force sharing between the fluid and solid phases, which controls the problem.

Fig. 4A depicts the results obtained from the quasi-2D consolidation experiments that were conducted using the apparatus
in Fig. 2A. The top figure shows the evolution of stresses and the pressure for three representative experiments with different
granular configurations. The solid lines in Fig. 4 represent the average results for three different experiments while the shaded
region corresponds to the calculated standard deviation (see Fig. A.1 for the same plot for each individual experiment). They are
plotted as a function of the consolidation ratio 𝑐, defined as the ratio between the current deformation over the total deformation
resulting from the consolidation process. One can observe that the total stress 𝜎̄𝑦𝑦, the sum of the contributions of the fluid pore
pressure 𝑝̄ and the effective stress 𝜎̄′𝑦𝑦, is approximately constant (as prescribed at the top boundary). This result serves as validation
of our approach since the effective stress is measured using Eq. (16), and independent of the pore pressure 𝑝̄ measurement. Initially,
as theoretically expected, the pore fluid carries the majority of the load. As the consolidation proceeds, the pore fluid pressure
decreases and the effective stress increases, a manifestation of increase in inter-particle forces. A time lapse of the experiment (see
Movie S1) highlights the evolution of inter-particle forces. When the consolidation process is around 75% complete, the effective
stress and pore pressures appear to share load equally. At the end of the consolidation, the fluid pressure is entirely dissipated, and
the effective stress of the solid carries the total external load. At this point, the system is completely drained, and pore pressure
does not affect the mechanical response.
7
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Remark 4. It is important to note that the early portion of the total stress 𝜎̄𝑦𝑦 measured in the experiments and reported in Fig. 4A
hows a gap or difference with respect to the imposed stress. This difference is mostly present in the early portion of the consolidation
rocess (close to 𝑐 = 0%) when the pore pressure 𝑝̄ dominates the total stress. This error is likely due to the pressure gauge being
ocated near the entrance of the drainage valve, which would naturally induce lower pressures necessary for (slow) fluid flow. The
rror decreases passed 𝑐 = 50% as the pore pressure 𝑝̄ drops and the effective stress 𝜎̄′𝑦𝑦 starts to dominate the response.

The consolidation problem serves as a validation exercise for our newly derived expression for effective stress (Eq. (16)). This is
chieved by comparing the evolution of both the pore pressure 𝑝̄ and the settlement 𝑠 against the well-known analytical solutions

for consolidation (Eqs. (17) and (19)). Fig. 4B shows comparisons between the fluid pressure measured in the experiments and the
analytical solution furnished by Eq. (17). As noted earlier, the analytical solution for pore pressure depends on the coefficient of
consolidation, which here is calibrated to capture the flow rate of the experiments. Similarly, in Fig. 4C, the settlement 𝑠 for the
granular assembly in the experiment is compared to the analytical solution furnished by Eq. (19). Also, the maximum settlement (at
𝑐 = 100%) is controlled by the constrained modulus 𝐸. As shown in Fig. 4, the consolidation coefficient 𝑐𝑣 and the constrained elastic
modulus 𝐸 yield values that are well within those reported in the literature (Holtz et al., 1981). Thus, our approach to measure inter-
particle forces is validated with well-known analytical solutions of the consolidation problem. This enables us to make a direct link
between the evolution of inter-particle forces and effective stresses at the core of many poromechanical systems. It is important to
note that while our results explicitly link the effective stress model developed by Terzaghi to grain-scale phenomena, our approach
does not rely on phenomenological assumptions, and holds for general cases beyond the consolidation example presented here
(e.g., 3D loading).

4. Discussion

We now turn our attention to the following question: how are forces distributed in the particles – over time – in the presence
of fluids? We use our physics-based model to decode the mechanism controlling evolution of forces in the presence of fluids, in
particular the case of a fully saturated granular medium. Taking the time evolution of the theoretical expression for the total stress
in Eq. (15), the time evolution of the effective stress is seen as a combination of the time evolutions of the inter-particle forces
and the branch vectors enabling such contacts i.e., 𝝈̇′ = 1∕𝑉

∑

𝛼(𝒇 𝛼 ⊗ 𝓵𝛼 + 𝒇 𝛼 ⊗ 𝓵̇𝛼). In a geometrically frustrated system, i.e., one
here grains are not allowed to reconfigure, like the one shown in Fig. 2, the branch vectors do not evolve significantly since the
articles are geometrically constrained and unable to rearrange. Therefore, in such a system, the evolution of the effective stress is
ominated by the evolution of inter-particle forces such that

𝝈̇′ ≈ 1
𝑉

∑

𝛼
𝒇 𝛼 ⊗ 𝓵𝛼 (20)

ith a constant total stress, the reduction in pore pressure must be directly matched by a corresponding increase in effective
tress (i.e., 𝑝̇ = −𝜎̇′𝑦𝑦 ≈ −1∕𝑉

∑

𝛼
̇𝑓 𝛼
𝑦 𝓁

𝛼
𝑦 ). As shown in Fig. 5A, the pore pressure evolution is countered by the evolution of the

ertical effective stress. This in turn relies on the evolution of horizontal and vertical force chains carried by contacts with largest
omponents in those preferred directions. We conjecture that the orientation of the branch vectors acts as a catalyst in the evolution
f inter-granular energy density, since contacts with existing components in the vertical direction can do more work for a given
ncrement of force. It is important to note that neither phenomenology nor analogs with drained systems can provide insights
nto the question of force distribution. The former can only provide the current effective stress by inference or via constrained
oduli and the latter can only explain force distribution in dry systems. The effect of interstitial fluids is to control the rate of

volution in fluid-saturated systems, thereby affecting the force distribution, including under equivalent effective stresses. Even in
ry systems, the same macroscopic stress may result in a different force distribution. This is only exacerbated in diffusion-controlled
luid-saturated systems.

Fig. 5B shows a scatter plot of relative contact orientations and the force magnitudes associated with them for one of the
xperiments conducted in our study (see Fig. A.2 for the same plot for each of the experiments conducted in this study).
epresentative of the other experiments, this plot suggests that, initially, the distribution of force magnitudes is fairly uniform along
vailable branch vectors. As the energy density rate associated with the inter-particle forces peaks (Fig. 5A), the distribution of forces
isplays an increase in magnitude in the direction of vertically aligned branch vectors (Fig. 5B). This supports our conjecture that
ranch vectors play the role of catalysts in the evolution of inter-granular energy density. By the end of the consolidation process,
he forces reach peak magnitude, with strong directionality along the branch vectors that point along the direction of macroscopic
oad application. Remarkably, about 5% of particle contacts are responsible for 95th (p95) percentile of force distribution during
he experiment (Fig. A.1). These contacts are clearly biased towards the vertical direction as the pore pressure diffusion shifts the
oad-carrying burden from the fluid phase onto the solid phase.

Two issues come to mind that have important implications for the results presented herein. First, volume averaging equations
equire a representative unit cell of large enough volume 𝑉 such that one can properly define continuum variables such as the
ffective stress 𝝈′. Clearly, results would vary slightly with different sizes of 𝑉 . In this study, we do not analyze in depth the effects
f 𝑉 , rather we use the notion that internal stress calculated using volume averaging, are equal to external applied stresses when the
olume 𝑉 is appropriate (Andrade et al., 2012; Zohdi and Wriggers, 2005). In this particular case, the effective stress values at the
nd of consolidation perfectly match the external stress applied at the boundary, and all other continuum results (e.g., pore pressure
and settlement 𝑠) match the continuum theoretical results (see Fig. 4). Second, the effect of fluid-saturation in the inter-granular

orce distribution and evolution should be addressed. It is tempting to extrapolate that, since the effective stress is related to the
8
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Fig. 5. Mechanism controlling the evolution of forces and effective stress with time (consolidation) in a fully saturated granular system. (A) Evolution of
pore pressure countered by the work rate done by the vertical forces in three different experiments. The solid line represents the average values of the three
experiments while the shaded region indicates the calculated standard deviation. (B) Scatter plot of force magnitude and contact orientation relative to the
direction of load application, showing clear increases in magnitude of force as consolidation evolves, especially in the direction of loading (𝜃 = 0).

inter-granular contact forces just like in the fully drained case, hence the force distribution should be the same regardless of the
fluid for a given level of effective stress. While tempting, this is not necessarily the case, as seen in Eq. (20), since the time evolution
of effective stress is controlled by the time evolution of the pore pressure such that 𝜎̇′𝑦𝑦 ∼ −𝑝̇ (see Fig. 5A) and, therefore, the fluid
pressure diffusion affects the time evolution of the inter-granular forces; the latter being path-dependent.

The linkage of effective stress and the force measurements in the presence of fluids allows us to reconstruct the evolution of
effective stress, pore fluid pressure, and total stress – independently – for the first time since the concept of effective stress was
introduced a century ago. Specifically, we focused our efforts to validate our approach against the limiting case that corresponds
to Terzaghi’s definition for effective stress. However, our hybrid approach is versatile and can be further developed to explore
complex poromechanical systems, unraveling the intimate coupling between inter-particle forces and solid stresses in the presence
of fluids. For example, inter-cellular forces could be directly measured using a similar hybrid approach, with different computational
and experimental ingredients, to complement the existing models for capturing cell behavior (Notbohm et al., 2012; Sunyer et al.,
2016).

Furthermore, in a departure from continuum roots, a recent discrete formulation of poroelasticity enables direct access to Biot
pore pressure coupling coefficients (Monfared et al., 2017), which drive diffusion in deformable solids due to inter-particle forces.
Thus, poroelastic diffusion can be considered as a design parameter for tissue engineering and drug delivery applications. This
hybrid framework also offers a path to directly probe capillary pressures in wet, disordered granular systems utilizing for example
a recent computational framework that can account for the formation, growth and coalescence of liquid clusters while properly
mapping the spatial distribution of capillary forces (Monfared et al., 2020). Such capability can provide tools in granular physics to
robustly define effective stress in partially saturated porous media (Lu, 2020). So far, most models have relied on validating only
the kinematics given the dearth of experimental measurement of forces. Our results open the door for simultaneously accessing
kinematics (deformation) and kinetics (forces) in poromechanical systems, which can facilitate the formulation of predictive models
that capture the underlying physics of these complex systems.
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Fig. A.1. Force percentiles and the contact percentage associated with those percentiles for experiments 1–3 (top-to-bottom). The data for each plot represents
all the time-series for that experiment. For example, for experiment 3, the forces great than the 20th percentile are carried by about 80% of the contacts.

Appendix A. Figures

See Figs. A.1–A.3.

Appendix B. Discrete element method simulation

We compared the fitted constrained Young’s modulus for the drained solid skeleton with results from simulations. We built a
computational model based on a variant of Discrete Element Method (DEM) that can capture arbitrarily shaped particles via their
level sets—called Level Set Discrete Element Method (LS-DEM). The full description of LS-DEM can be found here (Kawamoto et al.,
2016). For our simulations, we directly imported the initial configuration for one of the packings as shown in Fig. B.1 and applied
a uniaxial displacement to the packing constrained by the box to determine its constrained modulus. Frictional forces between the
particles and observation window have been neglected in the DEM simulations to model the experiments. The results are in good
agreement with the values obtained from the experimental data. The simulations were ran with coefficient of friction 𝜇 = 0.6,
density 𝜌 = 1250 kg m−3, normal stiffness 𝑘𝑛 = 20,000 N∕m, shear stiffness 𝑘𝑠 = 9000 N∕m and total strain of 10 percent in the
vertical directions while applying a no displacement boundary condition laterally. The application of the vertical strain is done in
5000 time steps to ensure a quasi-static loading. The obtained constrained modulus is 𝐸 = 4.062 MPa which is in good agreement
with those obtained from our hybrid experimental–mechanical setup (see Fig. B.2).

Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmps.2022.104912.
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Fig. A.2. Evolution of fluid pressure, effective stress, and their summation as a function of time for three different configurations of granular matter. Each symbol
represents data gathered at a certain consolidation (time). Experimental results with the shaded region capturing the range of results for various configurations.
The evolution of effective stress is calculated directly from the inter-particle forces obtained using GEM.
11



Journal of the Mechanics and Physics of Solids 165 (2022) 104912J.E. Andrade et al.
Fig. A.3. Scatter plots of force magnitude and contact orientation relative to the direction of load application for experiments 1 (A), 2 (B) and 3(C), showing
clear increases in magnitude of force as consolidation evolves, especially in the direction of loading (𝜃 = 0).
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Fig. B.1. An example of LS-DEM simulations (left) with the imported initial configuration from the experiment (right).

Fig. B.2. The axial stress 𝜎𝑦𝑦 vs. the axial strain 𝜀𝑦𝑦 curve for obtaining the constrained modulus (𝐸 = 4.062 MPa) for one of the configurations explored in
experiments.
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