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a b s t r a c t

Molecular simulation results on organic maturity (mature and immature kerogen as the two
asymptotic cases) are introduced into a continuummicromechanics based model for organic-
rich shales. Through a fundamental functional relationship that constrains microporous
kerogen density and elasticity variable spaces and within the framework of effective media
theory; the model bridges the gap between asymptotic cases of organic maturity with texture
as the overriding theme, specifically a matrix/inclusion (Mori–Tanaka) texture for immature
systems and a granular (self-consistent) texture for mature ones. The utility of the molecular
results merged into a continuum framework is demonstrated by estimating kerogen's mi-
croporosity (<2 nm) from nanoindentation measurements. The effect of burial and diagenetic
processes on the effective poroelasticity of these porous, naturally occurring geocomposites
are captured by introduction of imperfect interfaces. Finally, the performance of the model is
fully characterized by ranking the normalized contribution of uncertainty of input to the
overall behavior and parameters of interest to geophysicists and geomechanicians such as
degree of anisotropy and in situ stresses.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Due to their abundance, organic-rich shales are playing a critical role in re-defining the world's energy landscape and in
re-formulating the global geopolitics. However, technological challenges and environmental concerns continue to con-
tribute to the slow growth of organic-rich shale exploration and exploitation worldwide. The highly heterogeneous nature
and anisotropic behavior (mechanical and transport) of these porous organic/inorganic composites leave many open
questions regarding their characterization, modeling and engineering design. Our objective is to link organic maturity and
its elasticity to the effective elastic and poroelastic behavior of these intricate, naturally occurring geocomposites with
texture as the overriding theme. The significant body of literature on modeling shales and organic-rich shales (see e.g.
Vernik and Nur, 1992; Hornby et al., 1994; Ulm et al., 2004; Ortega et al., 2009b; Vernik and Kachanov, 2010; Sayers, 2013;
Khadeeva and Vernik, 2014); does not explore the effect of organic maturity on the overall poroelastic behavior of these
source rocks. In addition, the elasticity and the density of the organics are often assumed a priori; failing to account for
variations in structural, physical and chemical properties of these organics.

In a hypothesis testing approach, we attribute the first-order contribution of organic maturity on overall elasticity for low
total organic carbon (TOC ≤1mass%) shales to a texture effect while for high TOC systems, kerogen elastic properties assume

www.sciencedirect.com/science/journal/00225096
www.elsevier.com/locate/jmps
http://dx.doi.org/10.1016/j.jmps.2015.12.006
http://dx.doi.org/10.1016/j.jmps.2015.12.006
http://dx.doi.org/10.1016/j.jmps.2015.12.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmps.2015.12.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmps.2015.12.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmps.2015.12.006&domain=pdf
mailto:ulm@mit.edu
http://dx.doi.org/10.1016/j.jmps.2015.12.006


S. Monfared, F.-J. Ulm / J. Mech. Phys. Solids 88 (2016) 186–203 187
a role of first-order nature. Assuming all organics to be microporous kerogen, we utilize a functional relationship obtained
from molecular simulations on these microporous organics (Bousige et al., 2015) to constrain kerogen stiffness and its
density variable spaces; avoiding any assumptions a priori for these parameters. The simulations of Bousige et al. (2015)
were performed on re-constructed microporous kerogen samples and thus the kerogen phase referred throughout this work
is a microporous organic solid. The elastic and the fracture behavior of three re-constructed microporous kerogen samples
with different levels of maturity using a hybrid experimental-simulation technique were explored by Bousige et al. (2015).
Their results suggest that kerogen's Poisson's ratio has a low sensitivity with respect to its density and the state of maturity.
A nearly constant (ν ≈ 0.25kerogen ) Poisson's ratio from molecular simulations of Bousige et al. (2015) leaves one degree of
freedom associated with the isotropic elasticity of kerogen that is constrained through a fundamental functional relation-
ship with the density of kerogen, ρkerogen (see Fig. 6). The low sensitivity of νkerogen to the state of maturity seems to be a
consequence of the amorphous structure of kerogen and the randomness of the network that connects these organic
macromolecules.

As an application we estimate kerogen's microporosity from elastic measurements, in this case instrumented na-
noindentation data. The incorporation of the molecular simulation results into a mean field based framework shows pro-
mise in providing an unprecedented insight into subsurface rock properties from elastic based measurements e.g. seismic
and sonic wave velocities.

Lastly, we employ Spearman's partial rank correlation coefficient (SPRCC) to fully characterize the sensitivity of our
model to uncertainty in input parameters. The results can be of interest to geoscientists to better manage confidence in their
calculations by characterizing parameters with the highest contribution.
2. Theoretical tools

2.1. Homogenization and inclusion based effective estimates

The fourth-order homogenized stiffness tensor, hom, associated with a defined representative elementary volume, rev,
denoted by Ω, can be obtained from (Zaoui, 2002):

( ) ( ) Ω= ∀ ∈ ( )Ω
  x x x: 1

r rhom

where 〈⋯〉Ω implies volume averaging over Ω and Ω Ω Ω Ω Ω= ∪ ∪ ∪ ⋯ ∪ r1 2 3 where Ωr represents the rth subdomain, all
mutually exclusive. The scale separability condition requires the characteristic size of a micro-homogeneous phase in Ω,
denoted by d, to be much smaller than the characteristic length of the rev, ℓ, for homogenization (Zaoui, 2002). r is the
stiffness tensor of the rth micro-homogeneous phase and r is the fourth-order strain localization tensor. Due to Eshelby's
celebrated solution (Eshelby, 1957), in linear elasticity one can define the strain concentration tensor for phase r, r , as
follows (Dormieux et al., 2006):

( ) ( )= + − + −
( )Ω

− − −⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦        : : :
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where δ δ δ δ= = ( + ) Iijkl ik jl il ik
1
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is the fourth-order identity tensor, 0 denotes the background matrix stiffness tensor, and 

is the fourth-order Hill concentration tensor. The generalized expression for Hill concentration tensor reads (Zaoui, 2002):
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with (ij)(kl) implying indices symmetrization and ( − ′)G x xij representing the second order Green's tensor for a generalized
linear, elastic, anisotropic medium that characterizes displacement at point xdue to a Dirac delta type point force at ′x . Hill
concentration tensor is related to Eshelby tensor, Esh, in the following way:

= ( ) ( )−  : 4Esh 0 1

There are different ways to approximate Eq. (2) since aside from volume fractions, statistical distribution of higher order
textural parameters is almost never available for a random media. The two approximation schemes, with some physically
meaningful interpretations, are the self-consistent and the Mori–Tanaka. The self-consistent approximation scheme was
introduced and developed by Hershey (1954), Kroner (1958), Budiansky (1965) and Hill (1965). In the self-consistent
scheme, 0 in Eq. (2) is set equal to hom resulting in an implicit expression. This implies that no particular phase plays a
dominant role in contributing to the effective stiffness of the composite. The Mori–Tanaka approximation scheme was
initially proposed by Mori and Tanaka (1973) and further developed by Beneviste (1987). The Mori–Tanaka approximation
scheme can be achieved by setting 0 in Eq. (2) equal to M , where M is the stiffness of the dominant matrix phase. Mori–
Tanaka is often associated with a “swiss-cheese”/matrix-inclusion texture.
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2.2. Imperfect interfaces

In most continuum mechanics treatments, interfaces are assumed to be perfect. However, in reality, interfaces may play a
significant role on the effective elasticity of a composite. Thus, typical continuum mechanics approaches need to get refined
by accounting for the presence of these imperfect interfaces. The interface model employed here introduces a spring layer of
vanishing thickness, with a characteristics compliance, ω αδ β α= + ( − )n nij ij i j, between the inclusion (Ωinc) and the matrix
(Qu, 1993a,b). Decomposing ωij into tangential, α, and normal, β, components allows one to consider relative sliding. One
can recover a perfect interface, i.e. full bonding between the inclusion and the matrix, by setting ωij¼0, while ω ⟶∞ij

represents a complete de-bonding between inclusion and matrix.
Eshelby's solution (Eshelby, 1957) for total strain in an ellipsoidal inclusion can be refined to account for imperfect

bonding by introducing a surface integral over the interface to collect contributions due to interface “imperfections” (Qu,
1993b). The modified Eshelby tensor for an ellipsoidal inclusion, MEsh, for small ω, i.e. slightly weakened interface, reads
(Qu, 1993b):

∫Ω
Ω=

| |
( ) ( ) = + ( − ) × ( − )

( )Ω
S S x d x S I S H C I S

1
5ijkl ijkl ijkl ijpq ijpq pqrs rsmn mnkl mnkl

MEsh

inc

Esh
inc

Esh Esh Esh

inc

where α β α= + ( − )H T Qijkl ijkl ijkl embeds the interface compliance. For the special case of spheroidal inclusions, = ( )T Iijkl a ijkl
1

and δ δ= ( + )Q I2ijkl a ijkl ij kl
1

5
(Qu, 1993a). The inclusion grain radius, ‘a’, introduces a length scale into our continuum micro-

mechanical model. Finally, invoking Eq. (4), one can obtain the modified Hill concentration tensor, M:

( )= ( )
−

  : 6M MEsh 0 1

The modified Hill concentration tensor allows us to account for imperfect (to be precised: slightly weakened) interfaces in
our micromechanics based framework.
3. Materials

The model was calibrated and validated with two comprehensive data sets belonging to Woodford (A1–A5) (Abous-
leiman et al., 2007; Bobko, 2008) and Haynesville (B1–B6) shales. The Woodford samples are classified as immature (Ro-
mero and Philp, 2012) while the Haynesville samples are considered to be mature from RockEval analysis (Hydrogen Index
(HI) ¼17 ×S2 100/TOC and Oxygen Index (OI) ¼9 ×S3 100/TOC). For calibration, macroscopic elasticity is utilized while the
validation step employs nanoindentation data on the same samples. The mineralogy, porosity, organic content and mac-
roscopic elasticity used for calibration in addition to measured indentation data employed for validation are summarized in
Table A1 and Table A2, respectively. The utility of our original modeling approach is demonstrated through estimation of
kerogen's bulk modulus, Kkerogen, ρkerogen, and kerogen's microporosity, φmicro, from elasticity; in this case nanoindentation
data on samples from Barnett (C1), Antrim (D1), Marcellus (F1–F5) and Fayetteville (G1). The mineralogy of these samples,
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Fig. 1. Clay type distribution in the studied samples. Illite is the main clay component in all the samples used in this study. Illite/IS stands for mixed layers
of illite–smectite.



Table 1
Linear thermal expansion coefficients for various geomaterials.

Material α [( ) °]mm/m /, CTh

Degassed charcoala 4.50
Charcoal (glassy)b 470.1
Charcoal (rubbery)b 671
Green River kerogen-MD simulationc 292725
Green River Kerogen-Experimentc 10478
Kaolinite (x3)d 18.671.3
Kaolinite (x1)d 5.271.7
Chlorite (x3)d 972.3
Chlorite (x3)d 11.171.4
α-Quartze 24.3
Feldspare 14.1-15.6

a Bangham and Franklin (1946).
b Zhang et al. (2007).
c Zhang and Leboeuf (2007).
d McKinstry (1965).
e Houtari and Kukkonen (2004).
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porosity and organic content as well as measured indentation modulus (Abedi et al., 2015) are summarized in Table B1 and
Table B2, respectively. Fig. 1 shows the distribution of different clay types for all data, hinting at the dominance of illite.
4. Model developments

The poroelastic behavior of any porous composite can be described by the classical poroelastic state equations (Dormieux
et al., 2006):

αΣ = − ( ) pE: 7hom

αϕ ϕ( − ) = + ( )
p
N

E: 80

ϕ ϕ( − )0 is the Lagrangian porosity change, α denotes the second-order tensor of Biot pore pressure coefficients, and N is the
solid Biot modulus. In what follows, we will first present a structural and textural thought model which forms the backbone
for our model development. Then, the expressions for the effective stiffness and the poroelastic constants are presented.

4.1. Structural and microtextural thought model

We consider a multi-scale thought model that allows us to define a representative elementary volume (rev) at each
considered length scale following the framework established by Ulm et al. (2004) and its continuation by Ortega et al.
(2009b). The building block of the model, at level 0, is considered to be a microporous kerogen. Level I of the model
corresponds to the length scale associated with nanoindentation (10�7–10�6 m) with its rev denoted byΩI associated with
the composite response of a porous inorganic phase, i.e. clay, and a porous organic phase, i.e. kerogen. The effective stiffness
associated with this porous composite is denoted by I

hom. Anisotropy is introduced to the model as an intrinsic char-
acteristic of clay with its stiffness, clay, considered to be transversely isotropic with x3 parallel to the axis of rotational
symmetry and x1 parallel to the direction of the bedding planes. For the immature system, all measured porosity is assumed
to be in the clay phase while microporous kerogen forms a continuous matrix leading to a matrix/inclusion texture and thus
a Mori–Tanaka homogenization scheme. The measured porosity does not include the micropores of the kerogen phase. As
maturity progresses, kerogen pockets are reduced in size and become dispersed in the matrix (Prasad et al., 2009; Ahmadov,
2011). This implies more contact between stiff inorganic components leading to a continuous set of possible contact forces,
characteristic of a granular system (Radjai et al., 1996), best captured by a self-consistent homogenization scheme (Ulm and
Abousleiman, 2006). As a consequence of a self-consistent texture, porosity in mature system is assumed to be self-con-
sistently distributed, in both organic and inorganic phases. This implies that all solid phases in each level of the model
possess the same porosity. This is consistent with experimental observations suggesting the prevalence of porosity in
mature kerogen relative to immature ones (Curtis et al., 2013). In the case of mature system, the self-consistent distribution
of porosity leads to additional porosity in the microporous kerogen phase. Moreover, while characterizing pore size dis-
tribution (PSD) to validate their molecular model for mature and immature kerogen with experimental PSD, Bousige et al.
(2015) report that mature samples possess larger pores ( >pore size 2 nm) compared to immature ones.

Vernik and Kachanov (2010) report that Mori–Tanaka scheme is a powerful tool for capturing poorly consolidated sands.
Indeed, one can think of kerogen maturation as a “consolidation” process induced not by physical but chemical processes
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since the process of kerogen maturation entails a volume change in the organics phase, a phenomenon that has been
extensively studied (see e.g. Yakobson, 1991; Malthe-Srenssen et al., 2006). At level II of the model with its rev denoted by
ΩII, we account for the contribution of silt inclusions to the effective elasticity. This level of the model corresponds to a
length scale of relevance to sonic and ultra-sonic frequencies (10�7–10�6 m). The stiffness associated with this level of the
model is denoted by II

hom. A literature survey on mechanical characterization of organic-rich shales suggests the prevalence
of discontinuities in mature organic-rich shales relative to immature ones (see e.g. Vernik and Nur, 1992; Vernik, 1993;
Vernik and Landis, 1996; Vernik and Xingzhou, 1997). In addition, it has been observed that texture has a more significant
contribution to velocity anisotropy compared to micro-cracks (Prasad et al., 2009). To account for the presence of dis-
continuities and microtextural anisotropy, we introduce imperfect interfaces between silt inclusion grains and its sur-
rounding matrix in the mature system. The rational for existence of imperfect interfaces can be further explored by con-
sidering the expression for radial stresses in a thermoelastic formulation between the interface of a matrix and an inclusion:

σ α α θ( = ) = ×
+

( − )Δ ( )r a
K G
K G

3 4
3 4 9rr

M

M
M

inc

inc Th Th
inc

A positive value of radial stress, srr, at the inclusion/matrix boundary, i.e. r¼a, implies a tensile stress field. Here, super-
scripts M and inc denote quantities associated with matrix and inclusions, respectively. αTh represent the coefficient of
≥≥ ≥≥

Pore Size  2 nm

Porous Clay

Porous Silt 
Inclusions

Silt 
Inclusions
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Organic-Rich Shale
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Porous Clay-

Kerogen Composite 
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Level 0: 
Nano-Porous 

Kerogen 
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Fig. 2. Schematics for the multi-scale maturity dependent model for organic-rich shales. At level 0, microporous kerogen forms the building block of the
model. Level I of the model corresponds to the length scale relevant to nanoindentation representing the composite response of porous clay and porous
kerogen phases (different porosity distributions for each system); homogenized in intermediary homogenization steps, each shown by a circle. The
macroscopic response, level II of the model, is captured by accounting for the contribution of inclusion silt grains to the effective poroelasticity. The self-
consistent texture of mature systems implies a self-consistent porosity distribution in each phase, as shown on the left side of this schematics.
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linear thermal expansion and θΔ is the change in temperature. Assuming that change of temperature is positive during
burial/diagentic processes over geological times (i.e. θΔ > 0), one can readily see that a positive radial stress occurs when
thermal expansion of the matrix becomes larger than that of the inclusion, producing a tensile stress field. Characteristic
values of thermal expansion coefficients for some constituent of organic-rich shale are given in Table 1. For inclusions,
taking charcoal as an asymptotic case for mature kerogen and Green River, an immature example, as well as kaolinite as the
mineral making up the inorganic matrix; one can readily observe that at some point in geological times, the physical and
chemical changes in kerogen structure and composition lead to α α( − ) > 0M in

Th Th which in turn leads to partial de-bonding at
the interfaces between organic and inorganic constituents. This illustrates the significance of burial/diagenetic processes on
overall anisotropic poroelasticity of organic-rich shales. Finally, in our approach, we consider grains and pores to be
spheroidal. This is based on the notion that aspect ratios and grain orientations do not seem to have a first-order con-
tribution on the overall poroelastic behavior of organic-rich shales, specifically in a porous solid with a high packing density
(Ortega et al., 2009a). Vernik and Kachanov (2010) argue that in seismic and sonic frequency range for low porosity rocks,
i.e. high solid packing density, (pore or crack) aspect ratios do not play a significant role.

In summary, for immature systems, Ω Ω Ω= ∪I pc kerogen and Ω Ω Ω= ∪II I
up

inc. Similarly, for the mature case,
Ω Ω Ω= ∪I pc pk and Ω Ω Ω= ∪II I pinc. Porous clay is denoted by ‘pc’, porous kerogen is represented by ‘pk’, porous inclusion is
shown by ‘pinc’ and Ωup

I is the upscaled poroelastic response of ΩI which is homogenized with porous inclusions. The
schematic representation of the model is shown in Fig. 2.

4.2. Volume fractions

4.2.1. Immature system
Based on the thought model presented in Section 4.1, the volume fractions associated with the phases that contribute to

the poroelastic behavior of organic-rich shales at macroscopic length scale can be written as: ϕ+ + + =f f f 1clay kerogen inc .
The measured porosity is denoted by ϕ while fclay, fkerogen and finc represent volume fractions associated with clay, kerogen
and silt inclusion phases, respectively. The volume fraction of the rth solid phase at level II is defined as:

ϕ
ρ

ρ
= ( − )

∑ ( )=

f
m

m
1

/

/ 10
r

r
g
r

i
p i

g
i

1

wheremr is the mass percent of the rth phase, ρr
g is the grain density associated with this phase and p stands for all minerals

present plus kerogen. The silt grain inclusion volume fraction, finc, consists of all inorganic minerals excluding clay. It is
defined as follows:

ϕ
ρ

ρ
= ( − )

∑

∑ ( )

=
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j
k j
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j

i
p i
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with k representing all none clay inorganics (silt grains). At level I of the model, the solid volume fraction associated with
the rth solid phase, ηr, reads:

η =
− ( )
f

f1 12
r

r

inc

And similarly, porosity at level I, φ reads:

φ ϕ=
− ( )f1 13inc

Furthermore, in order to estimate pc associated with Ωpc; we define the following volume fractions: η = η
η φ+n

clay clay

clay and

φ = φ
η φ+n clay .

4.2.2. Mature system
For the mature model, granular microtexture and consequently a self-consistent porosity distribution result in a slightly

different set of definitions for volume fractions. The volume fractions corresponding to the phases that contribute to the
poroelastic behavior of mature organic-rich shale macroscopically are: ϕ ϕ ϕ+ + + + + =f f f 1clay kerogen inc inc ker clay ; where:

ϕ ϕ=
+ + ( )

f
f f f 14

r
r

inc ker clay

The measured porosity, ϕ ϕ ϕ ϕ= + +clay kerogen inc where ϕr (r¼ inc, kerogen, clay) is the self-consistent porosity associated
with the solid phases. fclay and fkerogen are defined by Eq. (10) while finc is expressed by Eq. (11). The solid volume fraction of
the rth phase, ηr, and the porosity, φ, at level I of the model can be obtained from:
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η =
− ( )

f
f1 15

r
r

pinc

φ ϕ=
− ( )f1 16

r
r

pinc

Where ϕ= +f fpinc inc inc. Additionally, the normalized kerogen volume fraction and the porosity associated with domain

Ωpk is defined as: η = η
η φ+n

kerogen kerogen

kerogen kerogen and φ = φ
η φ+n

kerogen kerogen

kerogen kerogen . For the domain associated with porous clay, Ωpc,

η = η
η φ+n

clay clay

clay clay and φ = φ
η φ+n

clay clay

clay clay . Finally, for the purpose of computing the effective elasticity of porous silt inclusion,

one can define =
+

fn
r f

f f

r

quartz calcite (r¼quartz, calcite). Lastly, in a separate step to account for porosity in the inclusion phase,

we define: =
ϕ+

fn
f

f
inc inc

inc inc and ϕ = ϕ
ϕ+n f

inc inc

inc inc .

4.3. Level I: effective elasticity

4.3.1. Immature system
The effective stiffness of the porous composite at level I of the model for immature organic-rich shale can be obtained by

invoking Eqs. (1) and (2) as follows:

= ( )Ω  : 17r r
I
hom

I

where Ω Ω Ω= ∪I pc kerogen and Ω Ω Ω= ∪ φpc clay . The stiffness of porous clay can be computed using: = Ω  :r r
pc pc

. All the
relevant volume fractions are defined in Section 4.2.1. The exact expression for strain localization tensor, Eq. (2), depends on
the homogenization scheme used. Thus, in a Mori–Tanaka scheme for immature organic-rich shales, 0 in Eq. (2) should be
replaced with kerogen when implementing Eq. (17). Additionally, estimation of pc requires replacing 0 with clay in Eq. (2).

4.3.2. Mature system
Similar to the case of immature organic-rich shale model, the expression for effective stiffness at level I of the mature

model, I
hom, looks exactly like Eq. (17) however with a different porosity distribution in the organic and inorganic phases in

addition to a granular microtexture. These differences need to be considered when estimating I
hom, pc and pk. The re-

levant volume fractions are defined in Section 4.2.2.

4.4. Level II: effective elasticity

4.4.1. Immature system
The rev defined for the level II of the model includes two domains: the porous composite upscaled from level I and

denoted by Ω Ω= ( − )f1I
inc

II as well as the inclusion domain, Ω Ω= finc
inc

II. Similar to Eq. (17), the expression for estimating
the effective drained stiffness at level II reads:

= ( )Ω  : 18r r
II
hom

II

In a Mori–Tanaka homogenization scheme, when implementing Eq. (18), 0 in Eq. (2) should be replaced with I
hom. Fur-

thermore, = +  K G3 2inc inc inc with δ δ= ( ) ij kl
1
3

and = −  . Kinc and Ginc were obtained by homogenizing bulk and shear

moduli of pyrite ( =K 138.9 GPapyrite , Gpyrite¼112.3 GPa) and quartz (Kquartz¼37.9 GPa, =G 44.3 GPaquartz ) (Mavko et al.,
2003).

4.4.2. Mature system
For the macroscopic response of the mature system, one needs to account for the effective behavior of two porous

systems; with a uniform pore pressure field prevailing inside them. Additionally, the effect of weakened interfaces between
silt inclusion grains and the matrix needs to be considered. This can be done by replacing  in (2) with (6). The expression
for II

hom is the same as (19) though the defined rev includes porous inclusions with its matrix elasticity obtained from
homogenizing quartz and calcite ( =K 58.2 GPacalcite , Gcalcite¼28.3 GPa) (Mavko et al., 2003) in a self-consistent manner.

4.5. Poroelastic coefficients and poroelasticity

The poroelastic response of a porous composite can be obtained by superimposing the solution to two boundary value
problems. One involves the response of the system when an eigenstress, σT , is imposed in the pore space, while keeping a
zero displacement boundary condition. The other accounts for the response of the system when a displacement boundary
condition is imposed. The application of Hill Lemma and Levin's theorem enables one to obtain and to upscale the Biot solid
modulus, N, and Biot tensor of pore pressure coefficients, α. With these at hand, assuming full saturation, one can obtain the



Table 2
Poroelastic coefficients for the immature system for each defined rev.
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undrained behavior of a porous composite as follows (Dormieux et al., 2006):

α α= + ( ⊗ ) ( )  M 19un
hom hom

ϕ= + ( )M N K
1 1

20f

The saturating fluid was assumed to be water with a bulk modulus, Kf of 2.3 GPa. The final expressions for poroelastic
coefficients are summarized in Table 2 for the immature system and Table 3 for the mature one.
5. Results

5.1. Calibration procedure

The calibration of the model was performed by downscaling the macroscopic elasticity of both Woodford (immature)
and Haynesville (mature) data sets by minimizing the Frobenius norm of the measured values and the predicted undrained
elasticity, II,un

hom; as mathematically summarized in Eq. (21). The degrees of freedom associated with this multi-objective
minimization problem are outlined in Eq. (22). The silt inclusion grain radius for weakened interface model was estimated
from a SEM image on Haynesville sample (see Fig. 3). The transversely isotropic clay elasticity, clay, was constrained to
Table 3
Poroelastic coefficients for the mature system for each defined rev.
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Fig. 3. A Scanning Electron Microscope (SEM) image on Haynesville sample. An average inclusion grain radius of 2 μm, input for imperfect interface model,
was chosen. This image is courtesy of Amer Deirieh.
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ensure its positive definiteness. Furthermore, kerogen bulk modulus, Kkerogen, was introduced as the sole degree of freedom
associated with kerogen. This is justified from the results of Bousige et al. (2015) which suggest ν ≈ 0.25kerogen , independent
of ρkerogen or its state of maturity. This is done utilizing the functional relationship, as displayed in Fig. 6, to constrain density
and bulk modulus variable spaces – based on maturity. This allows us to avoid any assumptions a priori regarding elasticity,
density and consequently volume fraction of the kerogen phase. For the mature system we used simulation results of
Bousige et al. (2015) on re-constructed Marcellus kerogen (MAR) with a vitrinite reflectance of =R% 2.20 ; while for the
immature one, we utilized the reported values of Bousige et al. (2015) on Middle East Kerogen (MEK) with a vitrinite
reflectance of =R% 0.550 :

( ) ( )∑ ∑∥ − ∥ + ∥ − ∥
( )

⎛
⎝
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⎞
⎠
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Fig. 4. Calibration quality check by comparing predicted macroscopic values (drained and undrained) for Woodford on the left and Haynesville on the right
against the measured values.



Table 4
Available reported anisotropic clay elasticity obtained from a combination of experimental (laboratory/simulation) techniques.

Clay type C11 (GPa) C12 (GPa) C13 (GPa) C33 (GPa) C44 (GPa)

Muscovitea 178 42.40 14.50 54.90 12.20
Muscoviteb 184.30 48.30 23.80 59.10 16
Kaolinitec 171.50 38.90 26.90 52.60 14.80
Muscovited 250 60 35 80 35
Chloritec 181.80 56.80 90.10 96.80 11.40
Illite (ReaxFF)e 21675 7679 2974 9371 10.870.4
Illite (ClayFF)e 292.570.5 128.370.4 16.6770.08 48.970.1 9.8270.04

a Aleksandrov and Ryzhova (1961).
b Vaughan and Guggenheim (1986).
c Katahara (1996).
d Seo et al. (1999).
e Hantal et al. (2014).
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5.2. Calibration and validation results

Calibration results can be summarized as follows: =C 103.0 GPa11
clay , =C 41.6 GPa12

clay , =C 34.1 GPa13
clay , =C 43.3 GPa33

clay ,
=C 7.7 GPa44

clay , =K 4.2 GPaWoodford
kerogen , =K 1.4 GPaHaynesville

kerogen , α = × −1.53 10 7 GPa�1, and β = ×−1.17 7 GPa�1. As a quality check,
the measured values are plotted against predictions using the calibrated results, displayed in Fig. 4. The grain scale in-
dentation moduli of clay were calculated, using (Delafargue and Ulm, 2013):
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Table 5
Means and standard deviations of relative error between measured and predicted indentation moduli (level I). For Haynesville data, same sample size for
the reported measurements is assumed.

Indentation moduli Immature system Mature system

ē σe ē σe

M1 0.36 0.35 �0.03 0.50
M3 0.05 0.21 �0.58 0.55
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We obtain =m 62.3 GPa1 and =m 29.2 GPa3 , in x1 and x3 directions, respectively. A number of published transversely iso-
tropic clay elastic values are reported in Table 4 and agree well with our results. For further validation, the predicted
indentation moduli at level I of the model are compared to the measured values on Woodford and Haynesville samples. The
results are displayed in Fig. 5. The quality of this validation step is quantified using the mean, ē, and the standard deviation,

σe , of relative error, ei; computed as follows (Hellmich and Ulm, 2005): = ( − )ei
X Y

Y
i i

i
; ¯ = ∑e e

n i
1 and = ∑ ( − ¯)σ −e e e

n i
1

1
2 ; where

Xi and Yi represent model predictions and measurements, respectively and n represents the number of samples in the data set.
The calculated ē and σe are reported in Table 5. The obtained values for compliances are consistent with derivation of imperfect
interface model by Qu (1993a,b) for small compliances, hence slightly weakened interfaces. Additionally, the order of magnitude
for α and β compares well with reported normal and tangential compliances of a crack complied by Prioul et al. (2007).

5.3. Application: kerogen density and microporosity estimations

The unique approach in accounting for microtextural transition of source rocks with maturity via a mean field theory
enriched with data from molecular simulations enables us to indirectly access microtextural information from elastic
measurements. An important parameter for exploration geophysicists is kerogen density, ρkerogen. This density reflects the
degree of maturity of the organics and it carries information pertaining to its microporosity, φmicro. Having access to φmicro

from elastic based field measurements such as seismic or sonic wave velocities can revolutionize the current reserves
estimation techniques.

We estimated kerogen's bulk modulus and consequently its density utilizing indentation data on both mature (Marcellus,
Fayetteville) and immature (Barnett, Antrim) formations (see Appendix B) via:
ρkerogen [g/cc]
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Fig. 6. Bulk modulus of kerogen against density for two of the samples studied by Bousige et al. (2015) using a Molecular Dynamics (MD) Hybrid Reverse
Monte-Carlo simulation (HRMC) method. MAR refers to a mature kerogen extracted from a sample of Marcellus shale and MEK is the kerogen extracted
from an organic-rich shale sample from the Middle East, classified as immature kerogen. The fit is a power-law of the form = +y a becx with =a 1.2278MAR ,

=b 0.0016MAR , =c 6.0783MAR , = −a 3.2886MEK , =b 0.2997MEK and =c 3.2070MEK .



Table 6
Estimated kerogen density and microporosity of kerogen from elasticity.

Estimations
from
elasticity

C1 D1 F1 F2 F3 F4 F5 G1

Kkerogen (GPa) 4.1 6.4 35.0 35.0 9.0 6.1 7.7 5.2
ρkerogen (g/cc) 1.0 1.1 1.6 1.6 1.4 1.3 1.4 1.3
φmicro (%) 56 52 28 28 38 42 40 43
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Fig. 7. Application of the outlined methodology to estimate kerogen density. The predicted values reflect model's prediction after using the estimated
kerogen bulk modulus obtained by downscaling nanoindentation data.
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Then, assuming a graphite based organic backbone with a density, ρ =g
kerogen 2.26 g/cc (Pierson, 1993); we can estimate

φmicro via: ρ φ ρ= ( − )1 g
kerogen micro kerogen. The results are reported in Table 6 and the quality of the fit is displayed in Fig. 7. The

predicted kerogen densities are consistent with our expectations of higher values for mature systems. The high values for
kerogen bulk modulus for F1 and F2 are a consequence of low TOC for these two samples (0.5 and 1 by mass %, respectively).
This confirms our hypothesis of capturing the first-order contribution of organic maturity on effective elasticity as a texture
effect. For example, for the case of F1, the measured indentation moduli, M1¼50.3 GPa and M3¼38.4 GPa, agree well with
predictions using a vanishing kerogen stiffness, M1¼46.1 GPa and M3¼22.4 GPa; not that different compared to predictions
using a kerogen bulk modulus of 35 GPa: M1¼50.2 GPa and M3¼24.8 GPa. Furthermore, utilizing available data for Hy-
drogen Index (HI) of kerogen in the studied samples, a linear relationship between kerogen density and HI is established, as
displayed in Fig. 8. Additional data points on this plot, combined with other maturity indicators such as e.g. vitrinite re-
flectance, sp sp/2 3 ratio (Bousige et al., 2015) and normalizing these variable spaces by the values for a material representing
the upper end of maturity (e.g. pyrobitumen, graphite); would provide an indirect technique to relate kerogen density to the
degree of maturity.
6. Sensitivity analysis

A comprehensive sensitivity analysis of the model by means of Spearman's partial Rank Correlation Coefficient (SPRCC)
(Gibbons and Chakraborti, 2003) is presented to assess the sensitivity of the normalized variance of the model output with
regard to uncertainty associated with each input parameter. Specifically, the sensitivity of the undrained macroscopic
elasticity, the anisotropy parameters (Thomsen, 1986) and the minimum in situ horizontal stress to variations in model
input;namely clay, ϕ, Kkerogen, organic content (TOC), and fluid bulk modulus, Kf, are studied. Additionally, for the mature
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model, the sensitivity of output to tangential, α, and normal, β, interface compliances as well as silt inclusion grain radius
(radius or ‘a’) is explored. The Thomsen parameters are defined as (Thomsen, 1986): ϵ = −C C

C2
11 33

33
, γ = −C C

C2
66 44

44
and

δ = [ ( + ) − ( − )( + − )]⁎ C C C C C C C2 2
C

1
2 13 44

2
33 44 11 33 44

33
2 . The solution for the minimum in situ horizontal stress in a transversely

isotropic formation reads (Thiercelin and Plumb, 1994): σ σ α α ε ε= ( − ) + + ( − ) + ( − )P P C Ch
C
C p p

C

C

C

C3 3 1 11 2 12 1
13

33

13
2

33

13
2

33
; where Pp

denotes pore pressure and ε1,2 represents tectonically induced strains (assumed to be zero). To perform the sensitivity
analysis, each input parameter was introduced stochastically with a normal distribution, as follows:

μ σ∼ ( ) ( )X N , 26

N denotes a normal distribution. μ and s represent the mean and standard deviation needed to characterize a normally
distributed random variable, X. All distributions were defined using a coefficient of variation, = =σ

μ
V 0.10. The stochastic

inputs are summarized in Table 7. The analysis was performed by means of 1500 Monte Carlo simulations ensuring the
convergence of the result. The results are displayed in Fig. 10 for the mature system and in Fig. 9 for the immature case.
Table 7
Stochastically defined input for Spearman's partial rank correlation coefficient analysis by means of 1500 Monte Carlo simulations.

Input
parameters

Distribution
types

μ s V

Cclay
11 (GPa) Normal 103.0 10.3 0.1

Cclay
12 (GPa) Normal 41.6 4.2 0.1

Cclay
13 (GPa) Normal 34.12 3.4 0.1

Cclay
33 (GPa) Normal 43.3 4.3 0.1

Cclay
44 (GPa) Normal 7.7 0.77 0.1

ϕ (%) Normal 13 1.3 0.1
TOC (mass%) Normal 15.7 1.57 0.1
Kkerogen (GPa) Normal 1.69 0.16 0.1

α ( )−GPa 1 Normal 1.53 × −10 7 × −1.53 10 8 0.1

β ( )−GPa 1 Normal × −1.17 10 7 × −1.17 10 8 0.1

Radius (a) (m) Normal × −2 10 6 × −4 10 7 0.1



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 V
ar

ia
nc

e

C11
II,un CII,un12 CII,un13 CII,un33 CII,un44

*
h

Cclay
11 Cclay

12 Cclay
13 Cclay

33 Cclay
44 Kf TOC Kkerogen

Fig. 9. SPRCC results immature organic-rich shale model.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 V
ar

ia
nc

e

C11
II,un CII,un12 CII,un13 CII,un33 CII,un44

*
h

Cclay
11 Cclay

12 Cclay
13 Cclay

33 Cclay
44 Kf TOC Kkerogen Radius

Fig. 10. SPRCC results for mature organic-rich shale model.

S. Monfared, F.-J. Ulm / J. Mech. Phys. Solids 88 (2016) 186–203 199
The SPRCC analyses for the immature model suggest that TOC, and Kkerogen are the most influential parameters on the
effective undrained macroscopic elasticity while for Thomsen parameters and sh clay elasticity, clay, seems to play the
dominant role. Same trends can be observed for the mature model. Furthermore, the parameters associated with weakened
interface model, namely tangential and normal interface compliance, α and β, respectively, as well as silt inclusion grain
radius have negligible contribution to the normalized variance of the output.
7. Discussions

The combination of micro-textural transition of organic-rich shale with maturity and the results of maturity dependent
molecular studies on kerogen led us to a set of elastic values in relatively good agreement with published transversely
isotropic results (see Table 4), hinting at the existence of an effective set of illite-rich clay elasticity for similar depositional
environments. The model presented captures asymptotic cases for organic maturity. To model intermediate maturity levels,
one would need tools beyond mean field theory in order to incorporate higher order statistical distribution of microtextural
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parameters, i.e. beyond volume fraction information. The porous silt inclusions for the case of mature model arises as a
consequence of a self-consistently distributed porosity in all solid phases. This is a first-order approach to distinguish
porosity distribution in mature vs. immature systems. Further quantitative lab characterization with regard to porosity
distribution in various phases can be easily incorporated into the model once available. Lastly, a larger data sets for cali-
bration would result in improved values, though the framework established remains rigorous.

Furthermore, the contribution of burial and diagenetic processes on the evolution of organic matter and on overall
elasticity of organic-rich shales is captured by introducing slightly weakened interfaces. In reality, organic-rich shale de-
posits, over geological time, not only go through burial; but also uplifting and erosion, entailing a θΔ < 0. In addition, the
geothermal gradient at the geological time and burial location become a critical factor in terms of kerogen maturation and
its effect on overall poroelastic behavior of organic-rich shales. Kerogen maturation is a complex function of exposure time,
pressure, temperature and composition that is going over rapid physical and chemical changes (in geological time scale) as it
generates hydrocarbons. Some may argue that any discontinuities created in the subsurface such as micro-cracks and
weakened interfaces would re-cement over geological times and thus should not be considered in a modeling framework.
However, one needs to be aware that organic-rich shales are more intricate than other sedimentary rocks due to the
presence of both organics and inorganics. Both cementation and maturation occur over geological time scales, though the
kinetics involved in these processes and the characteristic time scale associated with them are not well understood. Chances
are that these processes occur on time scales that are orders of magnitude apart – though still within the same geological
time scale. It is also important to recognize that inorganics, e.g. quartz, for the most part remain physically, chemically and
structurally inert when exposed to pressure and temperature, in the range relative to subsurface exploration (Sorrell et al.,
1974). On the other hand, kerogen seems to go through chemical, physical and structural changes – and possibly a glass
transition – during maturation. A parameter that we identified in our rationalization was the coefficient of linear thermal
expansion, αTh. For inorganics such as quartz, αTh seems to not change much over the temperature range of our interest
(Sorrell et al., 1974), however, organics seem to be sensitive to the exposed temperature, pressure and more robustly, the
maturation state; which partly addresses the existence of weakened interfaces.

With molecular simulation results at the heart of our model, we are able to link kerogen maturity, elasticity and density
rigorously, promising a new horizon in subsurface characterization using elastic based measurements. The choice of a
ν = 0.25kerogen is based on the result of molecular simulations which itself follows fundamental principles of physics.
8. Conclusions

Merging molecular results with continuum micromechanics in the form of constraining variable spaces promise to be a
powerful tool for capturing intricate elastic and poroelastic behavior of organic/inorganic porous composites. Our original
multi-scale modeling approach utilizes a mean field theory to account for asymptotic textural transition of organic-rich
shales with maturity. The homogenization schemes employed, namely: Mori–Tanaka and self-consistent techniques im-
plicitly provide insights into phase interactions and force transmission in these composites as their texture evolve from a
matrix/inclusion into a granular one with burial and diagenetic processes taking place over geological time scale. The ob-
tained elastic values for illite-rich clays compare well with reported values obtained with different techniques performed at
different scales. Having microporous kerogen at the heart of our model enable us to indirectly access information such as
kerogen's density and its microporosity with profound implications on reserves estimation from elastic measurements.
Finally, we have utilized Spearman's partial rank correlation coefficient for a comprehensive sensitivity analysis for our
model and introduced it as a tool for geoscientists to improve confidence in their computations.
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Appendix A. Calibration and validation data sets



Table A2
Measured Woodford (Bobko, 2008) and Haynesville (Abedi et al., 2015) indentation moduli used for validation.

Samples M1 (GPa) M3 (GPa)

A1 10.7973.39 8.4772.35
A2 11.9573.1 9.0972.69
A3 10.2473.24 6.8272.12
A4 11.9874.24 9.8273.06
A5 7.3372.57 7.1472.63
B1 – –

23.0476.07
B2 – 22.5176.64

24.2674.19
2477.4

B3 – –

B4 – –

36.8376.24
B5 36.6875.68 22.8477.99

28.3976.68 24.2279.33
34.876.32 22.3677.52

19.8576.88
B6 29.6877.18 21.0975.94

30.9876.22 21.4176.75

Table A1
Elasticity, mineralogy, organic content and porosity of Woodford (Abousleiman et al., 2007) and Haynesville samples used in calibration of the model.

Measured
quantities

A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B6

Quartz (mass%) 37 31 33 34 27 30 27 16 20 32 28
Feldspar (mass%) 2 – 2 2 2 7 9 5 6 11 10
Plagioclase (mass%) 3 3 3 3 3 – – – – – –

Carbonate (mass%) 0.5 3 1 – 6 30 22 65 51 9 12
Ankerite (mass%) 2 4 2 7 8 – – – – – –

Pyrite (mass%) 9 13 10 6 3 – – – – – –

Clay (mass%) 30 28 31 36 36 30 38 11 20 43 38
Kerogen (mass%) 17 17.5 18 12 14 2.48 3.34 1.57 2.65 3.30 3.16
ϕ (%) 16 21 16 19 21 6.64 7.36 4.61 5.57 7.16 7.59
C11

macro (GPa) 23.1 25.6 23.8 28 21.2 58.7 54.1 49.9 64.6 51.4 58.52

C12
macro (GPa) 15.7 16 14.9 17.3 13.8 20.5 19.9 13.4 20.3 18.3 18.5

C13
macro (GPa) 5.2 6.6 5.3 5.6 4.9 15.4 11.3 10.4 21.4 12.6 11.6

C33
macro (GPa) 8.8 7.7 7.8 8.3 7.9 33.8 33.1 41.9 58.7 30.3 35.1

C44
macro (GPa) 6.9 6.1 6.2 7.5 6.3 14.9 15.7 15.3 20.7 13.6 14.6
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Appendix B. Application data set
Table B1
Mineralogy, kerogen content, porosity and HI of samples used in application of the model for estimating kerogen microporosity.

Measured quantities C1 D1 F1 F2 F3 F4 F5 G1

Quartz (mass%) 29.7 40.9 19.7 18.7 29.6 29.4 36.2 28.8
Clay (mass%) 41.8 31.4 29.2 29.3 38.4 32.2 32.2 25.1
Albite (mass%) 2.2 3.5 – – – – – 6.3
Calcite (mass%) 2.6 – 30.6 3.3 3.1 13.3 3 22.8
Microline (mass%) 3.2 – – – – – – –

Pyrite (mass%) 0.5 3.1 1.5 1.8 8.7 7.3 11.7 2.5
Gypsum (mass%) 7.8 – – – – – – –

Dolomite (mass%) – 4.4 4.4 3.6 1.4 2.4 1.5 8.9
Sanidine (mass%) – 7.9 – – – – – –

Plagioclase (mass%) – – 3.2 3.5 6.0 4.8 5.6 –

Siderite (mass%) – – 0.5 0.7 0.7 0.4 0.3 –

Anatase (mass%) – – 0.2 0.1 0.4 0.4 0.5
Barite (mass%) – – – – 1.5 – – –

Muscovite (mass%) – – 10.7 9.6 10.2 10.0 9.0 –

Kerogen (mass%) 12.2 9.6 0.5 1.0 7.7 7.3 8.2 4.92
ϕ (%) 7.3 8.8 8.4 7.9 7.2 5.2 6.5 4
Hydrogen Index (HI) [ × ]S2 100/TOC 824 730 – – – – – 7



Table B2
Nanoindentation moduli used as an elastic measurement to estimate kerogen's microporosity (Abedi et al., 2015).

Samples M1 (GPa) M3 (GPa)

C1 17.3774.02 11.7872.45
D1 21.1174.68 12.3172.91

45.7479.81
41.7076.32 34.5978.31

F1 53.3777.32 40.9579.61
52.6177.83 37.7476.41
57.7077.12 40.5078.11
28.8175.04

F2 50.9479.01 –

35.3076.39 19.6673.44
F3 33.0275.59 25.1774.48

34.0677.23 23.5174.24
F4 29.175.55 –

23.8576.22
F5 28.1775.39 23.9275.28

29.4175.50 23.1975.51
G1 31.9975.91 –

30.2776.05

S. Monfared, F.-J. Ulm / J. Mech. Phys. Solids 88 (2016) 186–203202
References

Abedi, S., Slim, M., Hofmann, R., Bryndzia, T., Ulm, F.-J., 2015. Nano-chemomechanical signature of organic-rich shales: a coupled indentation-edx analysis.
Acta Geotech., submitted for publication.

Abousleiman, Y., Tran, M., Hoang, S., Bobko, C., Ortega, J., Ulm, F.-J., 2007. Geomechanics field and lab characterization of Woodford shale: The next gas play.
In: Proceedings, Society of Petroleum Engineers Annual Technical Conference and Exhibition SPE 110120.

Ahmadov, R., 2011. Micro-textural, elastic and transport properties of source rocks. Doctor of philosophy. Stanford University.
Aleksandrov, K., Ryzhova, T., 1961. Elastic properties of rock-forming minerals. ii. Layered silicates. Bull. USSR. Acad. Sci. Geophys. Ser. 9, 1165–1168.
Bangham, D., Franklin, R., 1946. Thermal expansion of coals and carbonised coals. Proc. R. Soc. A 27, 147–160.
Beneviste, Y., 1987. A new approach to the application of Mori–Tanaka's theory in composite materials. Mech. Mater. 6, 147–157.
Bobko, C., 2008. Assessing the mechanical microstructure of shale by nanoindentation: the link between mineral composition and mechanical properties.

Doctor of philosophy. Massachusetts Institute of Technology.
Bousige, C., Ghimbeu, C., Vix, C., Pomerantz, A., Suleimenova, A., Vaughan, G., Garbarino, G., Feygenson, M., Wildgruber, C., Ulm, F.-J., Pellenq, J.-M., Cosane,

B., 2015. Realistic molecular model of mature and immature kerogens in organic-rich shales. Nat. Mater, in press.
Budiansky, B., 1965. On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids 13 (4), 223–227.
Curtis, M., Sondergeld, C., Rai, C., 2013. Relationship between organic shale microstructure and hydrocarbon generation, SPE164540.
Delafargue, A., Ulm, F.-J., 2013. Explicit approximation of the indentation modulus of elasticity orthotropic solids for conical indenters. Int. J. Solids Struct.

41, 7351–7360.
Dormieux, L., Kondo, D., Ulm, F.-J., 2006. In: MicroporomechanicsWiley, Chichester.
Eshelby, J., 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. A 241, 376–396.
Gibbons, J., Chakraborti, S., 2003. In: Nanoparametric Statistical InferenceMarcel Dekker, Inc., New York, USA.
Hantal, G., Brochard, L., Laubie, H., Ebrahimi, D., Pellenq, J.-M., Ulm, F.-J., Cosane, B., 2014. Atomic-scale modeling of elastic and failure properties of clays.

Mol. Phys.: An Int. J. Interface Between Chem. Phys. 112, 1294–1305.
Hellmich, C., Ulm, F.-J., 2005. Drained and undrained poroelastic properties of healthy and pathological bone: a poro-micromechanical investigation.

Transp. Porous Media 58 (February (3)), 243–268.
Hershey, A., 1954. The elasticity of an isotropic aggregate of anisotropic cubic crystals. J. Appl. Mech. 21, 226–240.
Hill, R., 1965. A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13 (4), 213–222.
Hornby, B., Schwartz, L., Hudson, J., 1994. Anisotropic effective-medium modeling of the elastic properties of shales. Geophysics 59 (October), 1570–1583.
Houtari, T., Kukkonen, I., 2004. Thermal expansion of rocks: literature survey and estimation of thermal expansion coefficient for olkiluoto mica gneiss.

Working report. Geological Survey of Finland.
Katahara, K., 1996. Clay minerals elastic properties. In: Proceedings of the 66th SEG Annual Meeting, Expanded Technical Program Abstracts, pp. 1691–1694.
Khadeeva, Y., Vernik, L., 2014. Rock-physics model for unconventional shales. The Leading Edge 33 (3), 221–360.
Kroner, E., 1958. Berechnung derelastischen konstanten des vielkristalls aus den konstanten des einkristalls. Z. Phys. A Hadrons Nucl. 151 (4), 504–518.
Malthe-Srenssen, A., Jamtveit, B., Meakin, P., 2006. Fracture patterns generated by diffusion controlled volume changing reactions. Phys. Rev. Lett.

(June), 96.
Mavko, G., Mukerji, T., Dvorkin, J., 2003. In: Rock Physics Handbook: Tools for Seismic Analysis in Porous mediaCambridge University Press, New York, USA.
McKinstry, H., 1965. Thermal expansion of clay minerals. Am. Mineral., 50.
Mori, T., Tanaka, K., 1973. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21 (5), 571–574.
Ortega, J., Ulm, F.-J., Abousleiman, Y., 2009a. The effect of particle shape and grain-scale properties of shale: a micromechanics approach. Int. J. Numer. Anal.

Methods Geomech. 34 (October), 1124–1156.
Ortega, J., Ulm, F.-J., Abousleiman, Y., 2009b. The nanogranular acoustic signature of shale. Geophysics 74, 3.
Pierson, O., 1993. Handbook of Carbon, Graphite, Diamond, and Fullerenes. Noyes Publications, New Jersey, USA.
Prasad, M., Mukerji, T., Reinstaedtler, M., GmbH, R., Arnold, W., 2009. Acoustic signatures, impedance microstructure, textural scales, and anisotropy of

kerogen-rich shale, 533–543. SPE-124840-MS, DOI: http://dx.doi.org/10.2118/124840-MS.
Prioul, R., Donald, A., Koepsell, R., El Marzouki, Z., Bratton, T., 2007. Forward modeling of fracture-induced sonic anisotropy using a combination of borehole

image and sonic logs. Geophysics 72 (4), E135–E147.
Qu, J., 1993a. The effect of slightly weakened interfaces on the overall elastic properties of composite materials. Mech. Mater. 14 (4), 269–281.
Qu, J., 1993b. Eshelby tensor for an elastic inclusion with slightly weakened interface. J. Appl. Mech. 60 (4), 1048–1050.
Radjai, F., Jean, M., Moreau, J.-J., Roux, S., 1996. Force distribution in dense two-dimensional granular systems. Phys. Rev. Lett. 77 (July (2)).
Romero, A., Philp, R., 2012. Organic geochemistry of the Woodford shale, Southwestern Oklahoma: How variable can shale be? AAPG Bull. 96 (3), 493–517.
Sayers, C., 2013. The effect of kerogen on the elastic anisotropy of organic-rich shales. Geophysics 78 (March–April (2)), D65–D74.

http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref4
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref4
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref6
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref6
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref9
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref9
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref11
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref11
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref11
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref12
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref14
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref15
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref15
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref15
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref16
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref16
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref16
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref17
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref17
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref18
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref18
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref19
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref19
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref22
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref22
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref23
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref23
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref24
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref24
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref25
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref26
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref27
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref27
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref28
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref28
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref28
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref29
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref30
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref31
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref31
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref31
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref32
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref32
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref32
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref33
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref33
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref34
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref34
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref35
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref36
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref36
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref37
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref37


S. Monfared, F.-J. Ulm / J. Mech. Phys. Solids 88 (2016) 186–203 203
Seo, Y.-S., Ichikawa, Y., Kawamura, K., 1999. Stress–strain response of rock-forming minerals by md simulations. Mater. Sci. Res. Int. 5, 13–20.
Sorrell, C., Anderson, H., Ackermann, R., 1974. Thermal expansion and the high-low transformation in quartz. ii. Dilatometric studies. J. Appl. Cryst. 7 (468).
Thiercelin, M., Plumb, R., 1994. Core-based prediction of lithologic stress contrasts in East Texas formations. SPE Formation Evaluation, December.
Thomsen, L., 1986. Weak elastic anisotropy. Geophysics 51 (10), 195–196.
Ulm, F.-J., Abousleiman, Y., 2006. The nanogranular nature of shale. Acta Geotech. 1 (265), 77–88.
Ulm F.-J., Constantinides G., Delafargue A., Abousleiman Y., Ewy R., Duranti L. and McCarty D., Material invariant poromechanics properties of shales 37

(265), 2004, 43–58, Proceedings of the 3rd Biot Conference on Poromechanics, 24-27 May 2005, Norman, Oklahoma, USA. Edited by Franz-Josef Ulm,
Younane N. Abousleiman, and Alexander H.-D. Cheng, http://dx.doi.org/10.1201/NOE0415380416.ch96.

Vaughan, M., Guggenheim, S., 1986. Elasticity of muscovite and its relationship to crystal structure. J. Geophys. Res. 91, 4657–4664.
Vernik, L., 1993. Microcrack-induced versus intrinsic elastic anisotropy in mature hc-source shales. Geophysics 58 (11), 1703–1706.
Vernik, L., Kachanov, M., 2010. Modeling elastic properties of siliciclastic rocks. Geophysics 75 (6), E171–E182.
Vernik, L., Landis, C., 1996. Elastic anisotropy of source rocks: implications for hydrocarbon generation and primary migration. AAPG Bull. 80 (4), 531–544.
Vernik, L., Nur, A., 1992. Ultrasonic velocity and anisotropy of hydrocarbon source rocks. Geophysics 57 (5), 727–735.
Vernik, L., Xingzhou, L., 1997. Velocity anisotropy in shales: a petrophysical study. Geophysics 62 (2), 521–532.
Yakobson, B., 1991. Morphology and rate of fracture in chemical decomposition of solids. Phys. Rev. Lett. 67 (September (12)).
Zaoui, A., 2002. Continuum micromechanics: a survey. J. Eng. Mech. 128 (August (8)), 808–816.
Zhang, L., Leboeuf, E., 2007. A molecular dynamics study of natural organic matter: 1. Lignin, kerogen and soot. Org. Chem. 40, 1132–1142.
Zhang, L., Leboeuf, E., Xing, B., 2007. Thermal analytical investigation of biopolymers and humic-and carbonaceous-based soil and sediment organic matter.

Environ. Sci. Technol. 41 (14), 4888–4894.

http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref38
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref38
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref39
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref41
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref41
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref42
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref42
http://dx.doi.org/10.1201/NOE0415380416.ch96
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref44
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref44
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref45
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref45
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref46
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref46
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref47
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref47
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref48
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref48
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref49
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref49
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref50
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref51
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref51
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref52
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref52
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref53
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref53
http://refhub.elsevier.com/S0022-5096(15)30335-5/sbref53

	A molecular informed poroelastic model for organic-rich, naturally occurring porous geocomposites
	Introduction
	Theoretical tools
	Homogenization and inclusion based effective estimates
	Imperfect interfaces

	Materials
	Model developments
	Structural and microtextural thought model
	Volume fractions
	Immature system
	Mature system

	Level I: effective elasticity
	Immature system
	Mature system

	Level II: effective elasticity
	Immature system
	Mature system

	Poroelastic coefficients and poroelasticity

	Results
	Calibration procedure
	Calibration and validation results
	Application: kerogen density and microporosity estimations

	Sensitivity analysis
	Discussions
	Conclusions
	Acknowledgment
	Calibration and validation data sets
	Application data set
	References




