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GENERATION OF DISORDERED POROUS MATERIALS

To explore the role of structural disorder and confinement on capillary pressure fields,

pore fluid criticality and liquid-gas phase transition, a number of porous structures are

created. More specifically, a single realization of non-overlapping monodisperse spherical

particle packings in three-dimensional space (3D) are considered with the intent of creating

locally varying confinement through introducing spatial disorder in particle positions. Three

structures, A, B and C are created with imposed spatial disorder and a constant packing

fraction, fs = 0.43. A fourth structure, D is created with a higher packing fraction (fs = 0.5)

and structural disorder similar to C. Structure A - the reference configuration - contains

periodic arrangement of Np monodisperse particles of radius R in a cubic box of size Lx =

Ly = Lz = L with periodicity l = L/ 3
√
Np. For structures B and C, disorder is introduced

through random Monte-Carlo moves applied to each particle with an apparent pore radius

of Rapp. = λR with λ ∈ [1, l/ (2R)). The λ parameter reflects the degree of spatial disorder

of the particles varying from a quasi-ordered state λ = l/ (2R) to a disordered one λ = 1

[1]. To this end, three samples are created with λ ∈ {1.064, 1.021, 1.0}, Np = 512, L = 80

nm, R = 4.7 nm and overall packing fraction fs = 0.43. This method of generating porous

structures has been employed before to study the effective elasticity [2] and the failure of

disordered porous media [3]. To explore the effect of packing fraction, structure D is created

with fs = 0.50, Np = 955, L = 80 nm, R = 4 nm, and λ = 1.0. This is done by utilizing a

hybrid Grand Canonical Monte Carlo and Molecular Dynamics (GCMC-MD) method was

in LAMMPS [4] In this method, Np is adjusted to achieve the desired packing fraction while

Rapp is imposed through a short-ranged generalized Lennard-Jones interaction potential,

V (r):

V (r) = 6ε
[ (σ

r

)2γ

−
(σ
r

)γ ]
(1)

with r denoting the inter-particle distance and ε representing the well depth between two

particles of diameter σ = 2R. The cut-off radius is chosen to be rcr. = 21/γσ corresponding

to the distance at which the potential V (r) is a minimum and γ = 12. The apparent particle

radius, Rapp. is imposed via σ = 2Rapp.. This method of generating porous structures is used

for a number of investigations in the literature including the formation of cement hydrates

[5–7]. The voronoi tessellation, pair correlation function characterizing spatial disorder and
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FIG. 1: Voronoi tessellation [8] for structures A (1a), B (1b), C (1c) and D (1d). Radial

distribution function of the packing spheres, g(r), for disordered structures A (1e), B (1f),

C (1g) and D (1h). The Probability density function for pore radius, rp computed based

on the largest sphere that can fit inside a pore at a given point [9, 10] for structures A (1i),

B (1j), C (1k) and D (1l).

the pore size distribution (PSD) for the created granular structures are shown in Fig. 1.

As mentioned in the text, the porous structures are created by taking the negative of these

structures, i.e. switching pores and solids.

Nf
s (r) FOR POROUS MATERIALS

As discussed in the text, we characterize the number of interface solid sites in a spherical

domain of radius r, N f
s (r), that influence a given interface fluid site through a connected path

in the fluid domain, normalized by the total number of interface solid sites. N f
s (r) represents

the range of fluid-fluid correlations that can develop from the pore surface. Therefore,

N f
s (r) contains information regarding correlation length for the adsorbed fluid or surface-
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FIG. 2: N f
s (r = 20 nm) for structure A−D , GM (2a,2d,2g,2j, respectively) and PS

(2b,2e,2h,2k, respectively) along with the partial radial distribution functions for a fluid

site at the pore-solid interface with a connected path to a solid site at the pore-solid

interface (2c,2f,2i,2l, respectively).

surface correlation length. The distributions of N f
s (r = 20 nm) along with the partial radial

distribution functions for fluid sites at the pore-solid interface interacting with solid sites as

shown in Fig. 2
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CAPILLARY STRESS TENSOR

Generally in density functional theory (DFT) approaches the free energy of the system of

particles can be uniquely defined as a functional of inhomogeneous density and for a given

Hamiltonian H and external potential. The equilibrium density distribution ρeq is obtained

through minimization of the free energy functional. The coarse-grained lattice gas model

is the discrete version of DFT restricted to nearest neighbor interactions. It provides a

mean-field approach to study capillary phenomena. In this study, a liquid-gas fluid mixture

is considered. The interface between the two fluids is considered to be diffusive (see for e.g.

[11]), i.e. non-zero thickness, with physical quantities smoothly varying between the bulk

values in each phase [12]. The coarse-grained lattice gas density functional theory [13, 14]

is employed to capture this binary fluid mixture. The Hamiltonian for this model reads:

H = −wff
N∑
i

Nb
i∑
j

τiηiτjηj

−wsf
N∑
i

Nb
i∑
j

[τiηi (1− ηj) + τjηj (1− ηi)] (2)

where τi = 0, 1 and (1− ηi) = 0, 1 denote the fluid and matrix occupancy variables, respec-

tively. Furthermore, N is the total number of nodes andN b
i represents number of neighboring

sites for node i. Additionally, wff > 0 and wsf > 0 are energy parameters that quantify

the strength of liquid-liquid and solid-liquid interactions. These strength parameters can be

imposed via y = wsf/wff which is the ratio of these interaction parameters. For a given

matrix realization {ηi}, the fluid’s free-energy functional, Ψ, reads:

Ψ ({ρi}) =
1

β

N∑
i

[ρi ln ρi + (ηi − ρi) ln (ηi − ρi)]−

wff

N∑
i

Nb
i∑
j

ρiρj −

wsf

N∑
i

Nb
i∑
j

[ρi (1− ηj) + ρj (1− ηi)] (3)
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where β = 1/kBT with kB and T denoting Boltzmann constant and temperature, respec-

tively. Additionally, ρi denotes normalized fluid density at position ~xi:

ρi ≡ ρ (~xi) =
ρf (~xi)

ρbf
ρi ∈ [0, 1] (4)

with ρbf representing the bulk fluid density. Normalized density field ρ (~x) serves as the

only order-parameter in the model. For a given chemical potential, µ, minimization of the

fluid grand potential functional, Ω ({ρi}) = Ψ ({ρi}) − µ
∑N

i ρi, provides the equilibrium

density distribution in the system. In the continuum limit, the free energy of the lattice

model corresponds to the Cahn-Hilliard model [15]. For a cubic crystal or isotropic medium

invariant to the symmetry operations of reflection and of rotation, Taylor expansion of

specific free energy of a fluid, f , around a homogeneous state, f0, reads [16]:

f
(
ρ, ~∇ρ, ~∇2ρ, ...

)
= f0 (ρ) + κ1

~∇2ρ+ κ2

(
~∇ρ
)2

+ ... (5)

The mean-field approximation of Cahn-Hilliard-like phase field energy functional represent-

ing total free energy of fluid, F f for a volume V of the solution reads:

F =

∫
V

(
f0 (ρ) + κ1

~∇2ρ+ κ2

(
~∇ρ
)2

+ ...

)
dV (6)

Expanding the second term in Eq.(6) by applying the divergence theorem leads to:

F =

∫
V

(
f0 (ρ) +

(
−dκ1

dρ
+ κ2

)(
~∇ρ
)2

+ ...

)
dV +∫

∂V

(
κ1
~∇ρ · ~n

)
dS (7)

where ~n is the normal to boundary surface, dS. Neglecting terms beyond second-order

results in [16]:

F =

∫
V

(
f0 (ρ) + κ

(
~∇ρ
)2
)
dV +∫

∂V

(
κ1
~∇ρ · ~n

)
dS (8)

where κ is a gradient energy coefficient that quantifies gradient energy cost of creating

inhomogeneity in an otherwise homogeneous system and κ = −dκ1/dρ + κ2. In general, κ
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depends on density, temperature and concentration among other field variables and can be

related to the pair-correlation functions. Thus, the grand potential in the continuum limit

for a binary fluid reads:

G =

∫
V

(
f0 (ρ)− µρ+

1

2
κ
(
~∇ρ
)2
)
dV +∫

∂V

(
κ1
~∇ρ · ~n

)
dS (9)

Eq.(9) can be parameterized for the lattice gas model which in the continuum limit reads

[15]:

G =

∫
V

[kBT (ρ ln ρ+ (1− ρ) ln (1− ρ))− µρ]dV +∫
V

[
wffc

4
a2

0

(
~∇ρ
)2

− wff
2
cρ2]dV +∫

S

d~S ·
(
wsfρ~n−

wffc

4
a2

0ρ~∇ρ
)

(10)

where a0 represents lattice spacing and c the coordination number, f0 = kBT (ρ ln ρ+ (1− ρ) ln (1− ρ))−
c
2
wffρ

2 and gradient energy coefficient κ =
ca20
2
wff . This energy can be minimized by taking

the variational of Eq.(10) with the constraint δρ|∂V = 0 which results in [15]:

δG =

∫
V

(
−cwffρ−

ca2
0

2
wff

(
~∇2ρ

)
− µ

)
+∫

V

(
kBT ln

(
ρ

1− ρ

))
δρdV +

ca2
0

2
wff

∫
∂V

d~S · δρ~∇ρ

−ca
2
0

4
wff

∫
∂V

d~S · ρδ~∇ρ (11)

Furthermore, imposing δ ∂ρ
∂~n
|∂V = 0 ensures that surface terms vanish. This, the equilibrium

can be expressed as:

− cwff
(
ρ+

a2
0

2
~∇2ρ

)
+ kBT ln

(
ρ

1− ρ

)
− µ = 0 (12)

From thermodynamics, the classical expression for reference pressure, p0 reads:
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p0 = µρ− f0 (13)

To ensure mechanical equilibrium, σ = p01 needs to satisfy:

− ~∇ · σ = −~∇p0 = −~fext (14)

Re-writing Eq. (14) with Eq. (13) results in:

− ~∇ (σ − µρ1) = ~∇ · (f01) =
∂f0

∂ρ
~∇ρ (15)

In order to account for higher order term in the free energy, i.e. f = f
(
ρ, ~∇ρ

)
modifies Eq.

(15) as follows:

− ~∇ (σ − µρ1) =
∂f
(
ρ, ~∇ρ

)
∂ρ

~∇ρ (16)

Specifically, the second-order term in free energy expansion, Eq. (8) reads:

F1 =

∫
V

f1dV =

∫
V

1

2
κ
(
~∇ρ
)2

dV (17)

Similar to Eq. (15), to ensure mechanical equilibrium due to contributions of Eq. (17), one

can write:

~∇ · σ = −δF1

δρ
~∇ρ =

(
−∂f1

∂ρ
+ ~∇ · ∂f1

∂~∇ρ

)
~∇ρ = κ~∇ρ~∇2ρ (18)

utilizing vector identity ~u · ~∇~u = ~∇ · (~u⊗ ~u)− ~u~∇ · ~u, R.H.S. of Eq.(18) can be written as:

κ~∇ρ~∇2ρ = κ
(
~∇ ·
(
~∇ρ⊗ ~∇ρ

)
− ~∇ρ · ~∇

(
~∇ρ
))

(19)

Additionally, since ~u×
(
~∇× ~u

)
= 1

2
~∇ (~u · ~u)− ~u · ~∇~u , Eq.(18) reduces to:

κ~∇ρ~∇2ρ = κ
(
~∇ ·
(
~∇ρ⊗ ~∇ρ

)
− ~∇ρ · ~∇

(
~∇ρ
))

= −κ
((

1

2
~∇
(
~∇ρ · ~∇ρ

)
− ~∇ρ×

(
~∇× ~∇ρ

)))
κ
(
~∇ ·
(
~∇ρ⊗ ~∇ρ

))
(20)
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where ~∇× ~∇ρ = 0. Finally, utilizing ~∇ (~u · ~u) = ~∇ · (~u · ~u1), Eq.(18) now reads:

κ~∇ρ~∇2ρ = κ
(
~∇ ·
(
~∇ρ⊗ ~∇ρ

)
− ~∇ρ · ~∇

(
~∇ρ
))

= κ
(
~∇ ·
(
~∇ρ⊗ ~∇ρ

))
− κ

((
1

2
~∇
(
~∇ρ · ~∇ρ

)
− ~∇ρ×

(
~∇× ~∇ρ

)))
= κ~∇ ·

((
~∇ρ⊗ ~∇ρ

)
− 1

2

(
~∇ρ · ~∇ρ1

))
(21)

Thus, capillary-stress tensor for a binary-fluid can be written as [17, 18]:

σ =

(
p0 −

1

2
κ
(
~∇ρ
)2
)

1 + κ~∇ρ⊗ ~∇ρ+ σ0 (22)

where p0 is defined in Eq.(13) and σ0 represents an arbitrarily constant tensor. Thus, the

capillary pressure, p can be obtained as follows:

p =
1

3
trσ (23)

The fluid-fluid interaction strength, wff , can be calibrated according to the bulk critical

temperature, T 3D
c [14]:

kBT
3D
c =

cwff
4

(24)

where c denotes the lattice coordination number. The characteristic length scale for lattice

can be obtained by combining energy parameter wff with surface tension, Es. Estimates

for surface energy between liquid-gas interface results in [15]:

Es ∼
wff
2a2

0

(25)

The dimensionless form of these parameters read, µ̄ = µ/wff , T̄ = kBT/wff , w̄ff =

wff/wff , w̄sf = wsf/wff . In what follows, we have utilized a simple cubic lattice in

3D with c = 6. From the standard mean field equation of state for lattice with c = 6, we

expect a critical point located at T̄ = kBT
3D
c /wff = c/4 = 1.5 and ρc = 0.5. The fluid-solid

wall interactions can be derived from atomistic simulations (see for e.g. [19]). It is often

necessary to calibrate these potentials to reproduce experimental data that depends on

fluid-solid interactions such as the isosteric heat of adsorption [20].
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FIG. 3: Isotherms for different cylindrical pores at T̄ = 1.0 (3a), T̄ = 1.2 (3b), T̄ = 1.4 (3c)

and T̄ = 1.5 (3d). Capillary pressure curves for the same pores at T̄ = 1.0 (3e), T̄ = 1.2

(3f), T̄ = 1.4 (3g) and T̄ = 1.5 (3h).

ISOTHERMS & CAPILLARY CURVES FOR CYLINDRICAL PORES

We performed condensation and evaporation simulations on the same cylindrical pores

Lx = 160 nm� Ly = Lz with pore radius rp ∈ {2, 4, 8} nm. Reservoirs of length Lres. = 4

nm are added to both ends of the cylindrical pore. The capillary condensation and evapo-

ration for these pores are simulated for a0 = 0.25 nm, y = 2.5 and T̄ = {1.0, 1.2, 1.4, 1.5}.

The isotherms are shown in Figs. 3a-3d and the capillary curves are shown in Figs. 3e-3h.

CRITICAL EXPONENTS FITS

In the vicinity of critical temperature, T 3D
c , the following power law singularities for

correlation length ξ and connected susceptibility χ are expected [21]:

ξ ∼ |T − T 3D
c |−ν (26)

χ ∼ |T − T 3D
c |γ (27)
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Given the finite size of the simulation box, L, this divergence cannot be directly observed.

However, the simulation data can be extrapolated to L→∞ using a set of simulation sizes

and via finite size scaling analysis. Finite size scaling simply states that at the critical point,

ξ ∼ L, which leads to χmax ∼ Lγ/ν and µ∗ ∼ L−1/ν . To this end, connected susceptibil-

ity χ = L3 (〈ρ2〉 − 〈ρ〉2) is computed for volumes of characteristic length L ∈ {12, 14, 16}

nm for granular media A − D and T̄ = 1.5 (see Fig. 3 for structure C). These coarse-

graining length scales are chosen to be greater than the diameter of the solid particles

while providing reasonable statistics (number of realizations, N > 100). Additionally, for

the porous solid counterparts of granular packings A − D, a coarse-graining length scale

of L ∈ {7, 8, 9, 10} nm is chosen based on the diameter of the spherical pores. For each

realization x, χmax (x, L) is obtained. From χmax (L) = 〈χmax (x, L)〉 and its corresponding

chemical potential µ̄∗ (L) = 〈µ̄∗ (x, L)〉, critical exponents for structures A−D are estimated

to be ν ∈ {0.68, 0.77, 0.88, 0.81} and γ ∈ {2.14, 2.43, 2.89, 2.54} for granular packings and

ν ∈ {0.76, 0.82, 0.94, 0.47} and γ ∈ {2.21, 2.42, 2.70, 1.39} for their porous solid counterparts.

This is achieved by power-law fits of type y = axb for χmax (L) against L which provides

γ/ν and y = a− xb for µ̄∗ against L−1 which leads to ν. These fits are shown in Figs. 4a-4h

for granular packings and Figs. 5a-5h for porous solids. The quality of fit measured by

R2 for γ are 0.99, 0.99, 0.99, 0.99 for granular packings A −D respectively and for γ/ν are

0.62, 0.69, 0.49, 0.70 for porous solids A−D, respectively. Similarly for the porous solids and

γ the R2 values are 0.99, 0.99, 0.99, 0.99 and for γ/ν are 0.83, 0.71, 0.77, 0.77 for structures

A−D, respectively.

SENSITIVITY OF CAPILLARY CURVES TO LOCAL DENSITY THRESHOLD

The liquid domain, Ωl is determined via a threshold for local density, ρ (~xi). To assess

sensitivity of the estimated capillary pressure to the local density threshold, capillary curves

for structure C and for ρth. ∈ [0.5, 0.85] are shown in Fig. 6.

HIGHER ORDER CUMULANTS OF CAPILLARY PRESSURE FIELD

Consider the case of a bulk fluid with no confinement - for each imposed increment

of chemical potential µ, the PDFs for ρ (~x) and p (~x) follow a Dirac delta function, i.e.
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FIG. 4: Power law fit to obtain γ/ν for granular packings A−D (4a-4d) and for ν for

granular packings A−D (4e-4h).

FIG. 5: Power law fit to obtain γ/ν for porous solids A−D (5a-5d) and for ν for porous

solids A−D (5e-5h).

no variations in space. This picture changes as soon as the energy landscape is per-

turbed via introduction of confinement. This effect is explored by simulating a binary

fluid inside the described particle packings for T̄ = kBT/wff ∈ {1.0, 1.2, 1.4, 1.5} and

h = exp
((
µ− µ3D

sat

)
/kBT

)
∈ (0, 1]. For each increment, during both condensation and

evaporation, capillary pressure p (~x) scalar field in the pore domain, Ωp, is characterized

using its first four cumulants. In general, given a random variable x, it’s mean mx, variance

12



FIG. 6: Sensitivity of capillary pressure estimations to local density threshold for

determining liquid domain Ωl for structure C, ρth. ∈ [0.5, 0.85] and temperatures T̄ = 1.0

(6a), T̄ = 1.2 (6b), T̄ = 1.4 (6c) and¯(6d).

vx, skewness sx and kurtosis κx are defined as:

mx = 〈x〉 =
1

n

n∑
i

xi (28)

vx =
1

n− 1

n∑
i

(xi −mx)
2 (29)

sx = 〈(x−mx)
3〉/〈(x−mx)

2〉3/2 (30)

κx = 〈(x−mx)
4〉/〈(x−mx)

2〉2 (31)

where p (x) is the probability density function of random variable x. Pore domain is defined

as all fluid nodes with no solid neighbors. In addition, prior to any analyses, the average

pressure of the reservoir 〈p〉Ωres is subtracted from the capillary pressure scalar field, p (~x).

During these simulations, the particle packing remains static. In reality this would imply a

high confining pressure compared to capillary stress so that force balance remains satisfied

on each particle [22]. The first four cumulants of the capillary pressure field p (~x) in the

pore domain Ωp during both condensation and evaporation are shown in Fig. 7 for mean ,

Fig. 8 for variance, Fig. 9 for skewness and Fig. 10 for kurtosis.
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FIG. 7: Evolution of the capillary pressure field in the pore domain, Ωp characterized by

the mean during condensation for T̄ = 1.0 (7a), T̄ = 1.2 (7b), T̄ = 1.4 (7c) and T̄ = 1.5

(7d) and during evaporation for T̄ = 1.0 (7e), T̄ = 1.2 (7f), T̄ = 1.4 (7g) and T̄ = 1.5 (7h).

FIG. 8: Evolution of the capillary pressure field in the pore domain, Ωp characterized by

the variance during condensation for T̄ = 1.0 (8a), T̄ = 1.2 (8b), T̄ = 1.4 (8c) and T̄ = 1.5

(8d) and during evaporation for T̄ = 1.0 (8e), T̄ = 1.2 (8f), T̄ = 1.4 (8g) and T̄ = 1.5 (8h).
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FIG. 9: Evolution of the capillary pressure field in the pore domain, Ωp characterized by

the skewness during condensation for T̄ = 1.0 (9a), T̄ = 1.2 (9b), T̄ = 1.4 (9c) and T̄ = 1.5

(9d) and during evaporation for T̄ = 1.0 (9e), T̄ = 1.2 (9f), T̄ = 1.4 (9g) and T̄ = 1.5 (9h).

FIG. 10: Evolution of the capillary pressure field in the pore domain, Ωp characterized by

the kurtosis during condensation for T̄ = 1.0 (10a), T̄ = 1.2 (10b), T̄ = 1.4 (10c) and

T̄ = 1.5 (10d) and during evaporation for T̄ = 1.0 (10e), T̄ = 1.2 (10f), T̄ = 1.4 (10g) and

T̄ = 1.5 (10h).
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