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Using three-dimensional representation of confluent cell layers, we map the amorphous solid to
fluid phase transition in active cell layers onto the two-dimensional (2D) site percolation universality
class. Importantly, we unify two distinct, predominant, pathways associated with this transition;
namely (i) cell-cell adhesion and (ii) active traction forces. For each pathway, we independently
vary the corresponding control parameter and focus on the emergent mechanical stress patterns as
the monolayer transitions from a glassy- to a fluid-like state. Through finite-size scaling analyses,
our results lead us to establish the glassy- to fluid-like transition as a critical phenomena in terms
of stress development in the cell layer and show that the associated criticality belongs to the 2D
site percolation universality class. Our findings offer a fresh perspective on solid (glass-like) to fluid
phase transition in active cell layers and can bridge our understanding of glassy behaviors in active
matter with potential implications in biological processes such as wound healing, development, and
cancer progression.

The transition between solid (glass-like) and fluid
phases in cellular systems is of fundamental relevance to
a range of biological processes, including cancer metas-
tasis [1–3], wound healing [4–6] and tissue morphogen-
esis [7–9]. Over the past decade, this transition is re-
vealed to be governed by collective cell organization in
biological tissues [10–14], spurring a plethora of research
on this topic [9, 15–17]. To understand the solid-fluid
transition in biological systems, the concept of jamming
has been applied to inherently out-of-equilibrium living
cells [18–20] where jamming-unjamming is used to refer
to the transition between solid-like glassy and fluid-like
states. This is despite the geometrical roots of jamming
transition and its correspondence to the zero tempera-
ture and zero activity limit of a glass transition [21–24].
In this vein, non-equilibrium glass transition in active
systems share many features with equilibrium glass tran-
sition [25] and an effective thermodynamic equilibrium
may prevail for moderate activity driving the system out-
of-equilibrium [26].

Over the past decade, the glass-like to fluid transition
in living cells is broadly understood as a geometric jam-
ming transition characterized by a critical shape index
q = P/

√
A, where P and A are cell perimeter and area

respectively. This is primarily based on the application of
two-dimensional vertex models [19, 27], a voronoi based
variant endowed with motility [28] and experiments on
a range of epithelial systems [20] underlining the role of
geometrical constraints. More recent studies highlight
the role of two types of percolations based on (i) cell
connectivity [29] and (ii) edge tension network [30, 31].
In particular, experiments on a zebrafish blastoderm [8],
a non-confluent cell system with synchronous cell divi-
sions, show a solid-fluid transition at the onset of ze-
brafish morphogenesis. This transition is linked to a
rigidity percolation based on cell connectivity [29]. On
the other hand, application of a vertex model to het-
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FIG. 1. Schematic of a confluent layer displaying cell-cell and
cell-substrate adhesions and in-plane active traction forces
acting on the plane of the substrate (illustrated as yellow sur-
face). Created with BioRender.com

erogeneous cell layers [30] and experiments on primary
tumour explants [31] show rigidity percolation based on
edge tension network gives rise to finite shear modulus
in tumor explants consisting of heterogeneous mixture of
soft and stiff cancer cells. Notwithstanding these seminal
and important contributions, the universality of the tran-
sition between active solid (glass-like) and fluid phases
in cellular systems and its broader applicability is yet to
be established [7, 29, 32–37]. Therefore, despite the im-
mense significance of transition from glassy- to fluid-like
state in cell collectives in various biological processes, the
nature of transition remains elusive.

Here, we characterize the criticality of the active glass-
to-fluid transition in cell layers. Importantly, we estab-
lish this through two distinct paths by varying, indepen-
dently, cell-cell adhesion and active traction forces as con-
trol parameters and recover the 2D site percolation crit-
ical exponents for isotropic stress clusters via finite-size
scaling analyses.

We build on a recently developed three-dimensional
phase-field model for cell layers, which allows for inde-
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FIG. 2. Quantitative characterization of cell mobility in terms of overlap function (a,e), four-point susceptibility (b,f) and
self-scattering function (c,g) as cell-cell adhesion (a,b,c) and active traction force strength (e,f,g) are increased. The temporal
evolution of the median of shape parameter, q with increasing ω̄ (d) and ᾱ (h).

pendent variation of cell-cell and cell-substrate interac-
tions [38]. We consider a cellular monolayer consisting
of N = 400 cells on a substrate with its surface normal
~en (= ~ez) = ~ex × ~ey and periodic boundaries in both ~ex
and ~ey, where (~ex, ~ey, ~ez) constitute the global orthonor-
mal basis (see Fig. 1). Each cell i is modeled as an active
deformable droplet in three-dimensions using a phase-
field, φi = φi (~x) and initialized with radius R0. The
interior and exterior of cell i corresponds to φi = 1 and
φi = 0, respectively, with a diffuse interface of length λ
connecting the two regions and the midpoint, φi = 0.5,
delineating the cell boundary.

This approach resolves the cellular interfaces and pro-
vides access to intercellular forces. The dynamics of the
phase field φi is evolved through:

∂tφi + ~vi · ~∇φi = − δF
δφi

, i = 1, ..., N, (1)

where ~vi is the velocity of cell i and F [φ] is the three-
dimensional free energy functional that stabilizes cell in-
terface and accounts for cell mechanical properties in-
cluding cell stiffness (E) and compressibility (µ), and
puts a soft constraint on the cell volume [39–42] around
V0 = (4/3)πR3

0. Additionally, the free energy comprises

gradient contributions (~∇φ) that account for, and dis-
tinguish between, cell-cell (ωcc) and cell-substrate (ωcw)

adhesions, as introduced recently [38]:

F =

N∑
i

E

λ2

∫
d~x{4φ2

i (1− φi)2
+ λ2

(
~∇φi

)2

}

+
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+
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∑
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λ2

∫
d~x~∇φi · ~∇φw, (2)

where κ captures repulsion between cell-cell (subscript
cc) and cell-substrate (subscript cw) and φw denotes a
static phase-field representing the substrate. To resolve
the forces generated at the cellular interfaces, we consider
the following over-damped dynamics for cells:

~Ti = ζ~vi − ~F act
i =

∫
d~xφi~∇ ·

(∑
i

− (δF/δφi)

)
1 (3)

where ~Ti denotes traction [11, 43, 44] and contains
both active and passive contributions, ζ is substrate fric-
tion and ~F act

i = αF̂ pol
i represents self-propulsion force

directed by cell polarity, constantly pushing the system
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out-of-equilibrium with α characterizing the strength of
the self-propulsion force, and F̂ pol

i a unit vector corre-
sponding to the polarity direction for each cell. The dy-
namics of cell polarity is introduced based on contact
inhibition of locomotion [45, 46] by aligning the polarity
of the cell to the direction of the total interaction force
acting on the cell [47], and is chosen specifically based
on recent experimental observations [48] (see Materials
and Methods). Throughout this study we use the initial
cell radius R0 as the characteristic length scale, the po-
larity alignment time τ as the characteristic time scale,
and the cell stiffness E as the characteristic force scale to
report the results in dimensionless units (see Materials
and Methods).

In passive, athermal systems, jamming transition is in-
timately related to the packing fraction (density) of that
system. However, for living cells at confluence, the col-
lective behavior can change from a fluid-like to a solid
(glass-like) behavior at a constant density. In recent
studies, density is also shown to have a second order
effect on fluid-solid transition in cellular systems [18].
With this in mind, we keep the cell density constant in
our simulations, i.e. we do not allow cell proliferation
nor cell extrusion, while ensuring confluency. For each
considered pathway, we perform large scale simulations
by incrementally increasing the dimensionless cell-cell to
cell-substrate adhesion ratio ω̄ = ωcc/ωcw ∈ [0.1, 0.5]
for the first, and the dimensionless traction force ᾱ =
ατ/ζR0, ᾱ ∈ [0, 0.8], which characterizes the ratio of
self-propulsion to the friction with the substrate, for the
second pathway. For each case, three distinct realiza-
tions and nsim = 5000 time steps are considered. As we
show next, the considered ranges for ω̄ and ᾱ captures
the glassy- to fluid-like state of cells. Other simulation
parameters are fixed and outlined in the Materials and
Methods.

We begin by establishing what constitutes as a glassy
state, which is necessary to identify the onset of glassy-
to fluid-like phase transition. To this end, we charac-
terize cell displacement and cooperative cell motion as a
function of the two control parameters, i.e. dimension-
less cell-cell adhesion ω̄, and strength of traction force ᾱ
(Fig. 2).

First we quantify the overlap function, the fractional
change of cellular position in a given time increment ∆t,
Q (∆t) = (1/N)

∑N
i=1 wi, where w = 1 if |~xi (t+ ∆t) −

~xi (t) | < R0 and w = 0, otherwise. As the strength
of cell-cell adhesion ω̄, and the self-propulsion force ᾱ
increase, the overlap function falls below 0.2, reflecting
the high mobility of the cells and potentially exchanging
neighbors in a fluid-like state (Fig.2a,e).

To quantify the cooperative motions of cells, we use
the overlap function, Q (∆t), to compute the four-point

susceptibility, χ4 = N [〈Q (∆t)
2〉−〈Q (∆t)〉2]. When cells

move cooperatively, χ4 exhibits a clear peak with its
position and magnitude corresponding to pack lifetime

and pack size, approximately [49]. For a solid (glass-like)
state, typically the swirl lifetime grows and exceeds the
temporal window of observation, in our case that is the
total simulation time. For both the strong cell-cell adhe-
sion, ω̄ = 0.5, and self-propulsion force strength ᾱ = 0.8,
a fluid-like state is observed. This is evident from the
overlap function 〈Q (∆t)〉 indicating the formation of a
pack of ∼ 20 cells with a lifetime of ∼ 400 time steps, in
dimensionless units (Fig. 2b,f). For the adhesion or self-
propulsion strengths lower than this critical value, peaks
in χ4 are observed, with the pack size increasing as the
adhesion or self-propulsion force strength is increased.

To complete the characterization of the glassy dy-
namics we also quantify the self-scattering function,

Fs (k, t) = 〈ei~k·∆~r(t)〉 where |~k| = π/r0, and r0 is the
position of the first peak in the pair-correlation function.
Consistent with the characterization of the overlap func-
tion and four-point susceptibility, for the highest value
of cell-cell adhesion, Fs approaches zero indicative of a
fluid-like state (Fig. 2c). For ω̄ � 0.5, Fs is around one
suggesting a glass state. Similar behavior is observed for
the strength of self-propulsion force ᾱ � 0.8 (Fig. 2g).
Together, the results of the measurements of the overlap
function, four-point susceptibility, and the self-scattering
function confirm that upon increasing the ratio of cell-cell
adhesion to cell-substrate adhesion, or independently, in-
creasing the self-propulsion force, the active cell layer
continuously transitions from a solid (glassy) state to
a fluid-like state. Particularly, based on the presented
analyses of cell cooperative motions, this transition takes
place at ω̄ = 0.5 and ᾱ = 0.8.

The results discussed so far, indicating a glass-to-
fluid transition upon increasing cell-cell adhesion or self-
propulsion force, is consistent with the previous results
observed in experiments and vertex models of cell lay-
ers [18, 20, 28]. To this end, our point of departure
from the previous characterization of the active glass-
to-fluid transition in cell layers is that by accounting for
both cell-cell and cell-substrate interactions we do not
observe any geometric signatures for jamming transition
associated with the shape order parameter. This is ev-
ident from Fig. 2d,h where we compute the projected
area and the perimeter for each cell and every simu-
lation time steps and compute the cell shape index, q.
At all times after the initialization, for both glassy- and
fluid-like systems, the median for the shape index, q̄ re-
mains under q̄ = 3.75, clearly deviating from the value
of q̄ u 3.81 that has been suggested as the structural
order parameter for solid-to-fluid jamming transition in
cell layers [19]. Similar deviation has been observed in ex-
periments on zebrafish embryo and the associated active
vertex model that allows for finite extracellular spaces
between the cells [36]. Moreover, detailed analysis of the
voronoi based model [28] has find no geometric jamming
transition at the zero temperature limit [32]. Addition-
ally, recent experiments on Madin-Darby canine kidney
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FIG. 3. Percolation of isotropic stress within the cell layer. The fluctuations in normalized temporal average of the isotropic
stress field, δ ˜̄σiso = ˜̄σiso − 〈˜̄σiso〉, ˜̄σiso (~x) = σ̄iso/σiso

max where σiso = (1/3)trσ for increasing dimensionless cell-cell adhesion (a)
ω̄ = 0.2, (b) ω̄ = 0.45 and (c) ω̄ = 0.5. The largest spanning cluster (in Black) corresponding to ˜̄σiso (~x) for (g) ω̄ = 0.2
percolating at ρ = 0.743, (h) ω̄ = 0.45 percolating at ρ = 0.647, and (i) ω̄ = 0.5 percolating at ρ = 0.525 and dimensionless
active traction strength ᾱ for (d) ᾱ = 0.2, (e) ᾱ = 0.7 and (f) ᾱ = 0.8. The largest spanning cluster (in Black) corresponding to
˜̄σiso (~x) for (j) ᾱ = 0.2 percolating at ρ = 0.622, (k) ᾱ = 0.7 percolating at ρ = 0.540, and (l) ᾱ = 0.8 percolating at ρ = 0.599.

(MDCK) cells do not show such geometric criticality and
through various molecular perturbations establish that
the change in adhesion strength has no effect on the cell
perimeter, instead demonstrating that the traction forces
play a dominant role in glass to fluid phase transition in
the epithelial tissues [35].

Rather than geometric considerations, to understand
the glass transition in the considered confluent active cell
layers, we turn to the emergent mechanical stress fields.
To this end, we compute a coarse-grained stress field [50]:

σij =
1

2Vcg

∑
m∈Vcg

(
~Ti (~xm)⊗ ~enj + ~Tj (~xm)⊗ ~eni

)
(4)

where ~x0 represents the center of the coarse-grained vol-
ume, Vcg = `3cg, corresponding to coarse-grained length
`cg = a0 where a0 is the unit grid length, and unit vector

~eni = (~x0 − ~xm) /|~x0 − ~xm|. Given the definition of ~Ti in
(3), the coarse grained stress field, (4), contains contribu-
tions from both active and passive forces. To probe for a
possible mechanical criticality at the active glass-to-fluid
transition, we then measure the temporally averaged
isotropic stress field ˜̄σiso (~x) = σ̄iso (~x) /σ̄iso

max (~x), where
σ̄iso (~x) = (1/nsim)

∑nsim

t σiso (~x, t), with nsim number of
simulation time steps and σiso (~x, t) = (1/3) trσ (~x, t),
provides a measure of the amount of expansion (σiso > 0)
and compression (σiso < 0) in the cell layer. Visual in-
spection of the fluctuations in isotropic stress fields and
the associated patterns shows that for both adhesion pa-
rameter ω̄ (Figs. 3a-c) and traction force ᾱ (Figs. 3d-f),

as the control parameter is increased and the system ap-
proaches a fluid-like state, a more disordered isotropic
stress field emerges, suggesting a possible percolation of
isotropic stress in the system. Figs. 3g-l display the span-
ning cluster - a cluster of connected sites that spans two
opposing sides of the system’s boundary - in Black, for
each pathway as ω̄ or ᾱ is increased. To quantify this
emergent build up and the possible links to percolation
universality classes, we perform a finite-size scaling anal-
ysis [51, 52] for each path. We begin with quantifying
the density of the spanning cluster, P (p, L), which is the
probability of a site belonging to a spanning cluster as a
function of the occupation probability, p, and system size,
L. The occupation probability, p ∈ [0, 1], corresponds to
sites where ˜̄σiso (~x) is greater than (1− p) × 100-th per-
centile of the isotropic stress distribution. In the ther-
modynamic limit, i.e. L → ∞, we expect the following
power-law scaling near the percolation probability, pc for
the density of spanning cluster P (p) characterized by
critical exponent β:

P (p) ∼ (p− pc)β . (5)

Furthermore, we quantify the average cluster size,
S (p) = 〈s〉 where s is size of a cluster. Near the percola-
tion probability, the power-law scaling of S (p) quantified
by critical exponent γ reads:

S (p) ∼ |p− pc|−γ , (6)

and critical exponent ν which describes the power-law
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FIG. 4. Finite-size scaling analyses of isotropic stress criticality. The density of spanning cluster P (p, L) (a,e) and the average
cluster size S(p, L) at different length scales L and their collapse after performing a finite size scaling analysis for P (p, L) (b,f)
and S(p, L) (c,h). First row (a-d) corresponds to increasing dimensionless cell-cell adhesion ω̄ = ωcc/ωcw and the second row
(e-h) corresponds to increasing strength of active traction forces ᾱ.

scaling of correlation length ξ, an average distance be-
tween two sites in the same cluster, is expected to follow:

ξ ∼ |p− pc|−ν . (7)

Both the density of the spanning cluster, P (p, L) and
the average cluster size S (p, L) are displayed in Fig. 4
at the onset of the transition, i.e. ω̄ = 0.45 < 0.5 (Fig.
4a,c) and ᾱ = 0.7 < 0.8 (Fig. 4e,g) for various length
scales, L. Additionally, Fig. 4b,d,f,h show the collapse
of P (p, L) and S (p, L) when scaled with critical expo-
nents obtained from the finite-size scaling analysis, ac-
counting for a diverging correlation length ξ near the
pc, i.e. (7). Remarkably, the critical exponents corre-
sponding to the scaling of temporally averaged isotropic
stress field at the onset of the glass-to-fluid transition in
the active cell layer (Tab. I) lead to a reasonable col-
lapse and are in close agreement with those from the 2D
site-percolation universality class [53] (see supporting in-
formation for more details regarding finite-size scaling
analysis). Importantly, the agreement with the critical
exponents for 2D site-percolation universality class are
obtained for two independent pathways (i.e., cell-cell ad-

hesion and active traction force) of driving the system
through glass-to-fluid transition, further reinforcing the
universality of the isotropic stress percolation at the on-
set of active glass-to-fluid transition in model cell layers.
Moreover, a recent study suggest that the microscopic de-
tails of self-propulsion does not affect the glassy dynamics
of active systems [54]. This implies that our presented
analyses would hold irrespective of how we introduce ac-
tive self-propulsion forces, ~F act

i = αF̂ pol
i (see Materials

and Methods for details regarding the dynamics of cell
polarity).

Our findings contribute to the mounting evidence that
suggest the existence of critical phenomena and uni-
versality classes in diverse range of active and biologi-
cal systems including a first-order phase transition as-
sociated with the cell plasticity [55, 56], epithelial-to-
mesenchymal (EMT) during tissue spreading as a wet-
ting transition [57, 58], and viscosity changes due to rigid-
ity percolation in fly embryo [29].

Our results can also help guide the conversation on the
origins of density-independent solid-to-fluid phase tran-
sition in biological systems. Currently, the consensus on
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TABLE I. Critical exponents obtained from finite size scaling analysis.

pc γ β ν

2D site percolation [53] 0.5927 2.388 0.1388 1.333
This study (ω̄) 0.612± 0.004 2.305± 0.146 0.176± 0.049 1.422± 0.051
This study (ᾱ) 0.590± 0.007 2.103± 0.423 0.134± 0.009 1.243± 0.198

dominant mechanisms responsible for such a transition
are: (i) shape order parameter, (ii) rigidity percolation
based on cell-cell connectivity modulated by cell-cell ad-
hesion and (iii) percolation of mechanical tension. All
of these mechanisms are implicitly manifested in stress
fields and thus our findings, including the mapping to
the 2D site percolation universality class, can poten-
tially unify previously reported experimental and theo-
retical observations. To this end, our work opens new
possibilities to further investigate the nature of glass-to-
fluid transition in active systems using the tools of non-
equilibrium statistical mechanics and to explain transi-
tionary behaviours in biological systems. Moreover, the
reported findings call for development of new theoret-
ical formulations to explain active glass-to-fluid transi-
tion based on emerging stress patterns and the criticality
of the isotropic stress percolation. Simultaneously, di-
rect measurement of traction forces and mechanical stress
fields produced by multicellular layers is currently exper-
imentally accessible [43, 59] and can be used to probe
the proposed universality in cellular monolayers in ex-
periments.

Lastly, it would be interesting to further study any
possible connections between these results and those for
glass transition and jamming in passive, weakly con-
nected amorphous solids and granular materials. Par-
ticularly intriguing is the association of jamming in pas-
sive systems with the emergence of rigidity [60, 61] and
a variety of percolation models [62–64].

Simulation parameters

We consider a cellular monolayer consisting of N = 400
cells on a substrate with its surface normal ~en (= ~ez) =
~ex×~ey and periodic boundaries in both ~ex and ~ey, where
(~ex, ~ey, ~ez) constitute the global orthonormal basis. Cells
are initiated on a two-dimensional simple cubic lattice
and inside a cuboid of size Lx = Ly = 320, Lz = 64,
grid size a0 = 1 and with radius R0 = 8. Simulations are
run for nsim = 5000 time steps. We perform large scale
simulations with a focus on the interplay of cell-cell and
cell-substrate adhesion strengths on collective cell migra-
tion and its impact on cell expulsion from the monolayer.
Following [42], the space and time discretization in our
simulations are based on the average radius of MDCK
cells, ∼ 5µm, velocity ∼ 20µm/h and average pressure
of ∼ 100Pa, measured experimentally in MDCK mono-

layers [44], corresponding to ∆x ∼ 0.5µm, ∆t ∼ 0.1s
and ∆F ∼ 1.5nN for force. The simulation parameters
κcc = 0.5, κcw = 0.15, ζ = 1, E = 0.024, µ = 45,
Dr = 0.01 and τ = 200, are chosen in the range that
was previously shown successful for comparison of phase-
field model with experimental measurements of sustained
oscillations [48] and characterization of flows and topo-
logical defects in eputhelial cell monolayerFor the first
path to transition with cell-cell adhesion as the control
parameter, ᾱ = 1.25 and for the second path with active
traction force as the control parameter, ω̄ = 0.5.

Dynamics of cell polarity

The dynamics of cell polarity is introduced based on
contact inhibition of locomotion [45, 46] by aligning the
polarity of the cell to the direction of the total interaction
force acting on the cell [47, 48]. As such, the polarization
dynamics is given by:

∂tθi = −1

τ
|~Ti|∆θi +Drη, (8)

where θi ∈ [−π, π] is the counterclockwise angle of cell

polarity measured from ~ex, F̂ pol
i = (cos θi, sin θi) and η is

the Gaussian white noise with zero mean, unit variance,
Dr is rotational diffusivity, ∆θi is the angle between F̂ pol

i

and ~Ti, and positive constant τ sets the alignment time
scale.
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P. Marcq, R.-M. Mège, J. M. Yeomans, A. Doostmoham-
madi, and B. Ladoux, Sustained oscillations of epithelial

cell sheets, Biophysical Journal 117, 464 (2019).
[49] T. E. Angelini, E. Hannezo, X. Trepat, M. Marquez, J. J.

Fredberg, and D. A. Weitz, Glass-like dynamics of collec-
tive cell migration, Proceedings of the National Academy
of Sciences 108, 4714 (2011).

[50] J. Christoffersen, M. Mehrabadi, and S. Nemat-Nasser,
A micro-mechanical description of granular material be-
havior, Journal of Applied Mechanics 48, 339 (1984).

[51] M. E. Fisher and A. E. Ferdinand, Interfacial, boundary,
and size effects at critical points, Physical Review Letters
19, 169 (1967).

[52] M. E. Fisher and M. N. Barber, Scaling theory for finite-
size effects in the critical region, Physical Review Letters
28, 1516 (1972).

[53] D. Stauffer and A. Aharony,
Introduction To Percolation Theory (Taylor & Francis,
2018).

[54] V. E. Debets and L. M. C. Janssen, Active glassy dy-
namics is unaffected by the microscopic details of self-
propulsion (2022).

[55] F. Font-Clos, S. Zapperi, and C. A. La Porta, Topogra-
phy of epithelial–mesenchymal plasticity, Proceedings of
the National Academy of Sciences 115, 5902 (2018).

[56] C. A. La Porta and S. Zapperi, Phase transitions in cell
migration, Nature Reviews Physics 2, 516 (2020).

[57] S. Douezan, K. Guevorkian, R. Naouar, S. Dufour,
D. Cuvelier, and F. Brochard-Wyart, Spreading dynam-
ics and wetting transition of cellular aggregates, Pro-
ceedings of the National Academy of Sciences 108, 7315
(2011).

[58] C. Pérez-González, R. Alert, C. Blanch-Mercader,
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