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Abstract
Engineered granular materials have gained considerable interest in recent years. For this substance, the primary design vari-
able is grain shape. Optimizing grain form to achieve a macroscopic property is difficult due to the infinite-dimensional func-
tion space particle shape inhabits. Nonetheless, by parameterizing morphology the dimension of the problem can be reduced. 
In this work, we study the effects of both intuitive and machine-picked shape descriptors on granular material properties. 
First, we investigate the effect of classical shape descriptors (roundness, convexity, and aspect ratio) on packing fraction � 
and coordination number Z. We use a genetic algorithm to generate a uniform sampling of shapes across these three shape 
parameters. The shapes are then simulated in the level set discrete element method. We discover that both � and Z decrease 
with decreasing convexity, and Z increases with decreasing aspect ratio across the large sampling of morphologies—including 
among highly non-convex grains not commonly found in nature. Further, we find that subtle changes in mesoscopic proper-
ties can be attributed to a continuum of geometric phenomena, including tessellation, hexagonal packing, nematic order and 
arching. Nonetheless, such descriptors alone can not entirely describe a shape. Thus, we find a set of 20 descriptors which 
uniquely define a morphology via deep generative models. We show how two of these machine-derived parameters affect � 
and Z. This methodology can be leveraged for topology optimization of granular materials, with applications ranging from 
robotic grippers to materials with tunable mechanical properties.

Keywords  Granular materials · Non-convex · Topology optimization · Deep generative models · Discrete element method · 
LS-DEM

1  Introduction

Topology optimization—the automated design of a mate-
rial’s structure to engineer a desired property—has dem-
onstrated promise across multiple fields [49]. Due to 
exponential growth in computing power and algorithmic 
developments, computers have ‘invented’ functional struc-
tures, including: satellite brackets, cantilevers and lattice 
materials [7, 39, 49]. Nonetheless, topology optimization 

is inherently challenging due to the high dimension of the 
design space. As such, it is beneficial to parameterize the 
solutions with as few variables as possible, effectively reduc-
ing the dimension of the design space [28]. This process is 
prone to loss of critical information and it requires a deep 
understanding of the optimization problem. To overcome 
this, recent methods have leveraged deep learning to auto-
matically discover a reduced number of parameters needed 
to uniquely define a class of solutions. For instance, Wang 
et al. utilized a deep learning architecture known as a vari-
ational autoencoder (VAE) to construct a finite dimensional 
vector space, or ‘latent space’ of microstructures [44]. Each 
vector in the latent space within certain bounds defined 
a unique and valid material microstructure. Further, the 
dimension of the latent space was significantly lower than 
that of the original binary image of the microstructure. Such 
a vector space is invaluable to topology optimization, as 
optimization algorithms can be easily run in the continuous, 
complete and relatively low dimensional latent space. In this 
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work, we apply recent developments in topology optimiza-
tion to granular materials.

Granular materials—any collection of discrete-solid 
objects—are ubiquitous in both nature and industry [35]. 
Soils, ball bearings, and even asteroids can be classified as 
granular, and their behavior is approximated by rigid body 
dynamics [27, 30]. Thus, certain attributes persist across 
granular materials on multiple scales. One such phenom-
enon is jamming: when a collection of particles transition 
from a fluid-like flowing state to a solid-like locked state 
[4]. Recently, engineers and artists have attempted to design 
granular materials which take advantage of this unique jam-
ming property for achieving desired functionality. Exam-
ples include self-supporting structures for housing, fabric 
which can transition from soft to stiff with pressurization 
and robotic grippers. [6, 26, 45]. A primary challenge in 
designing such substances is picking the shapes of the indi-
vidual grains. Spherical particles tend to pack tightly, but 
do not have tensile strength when uncompressed. On the 
other-hand non-convex grains may entangle with each other 
and provide tensile strength, but pack loosely [10]. Conse-
quently, finding the optimal morphology for a set of design 
specifications remains an open, yet crucial, problem.

Discovering the ideal grain structure for optimizing a 
macroscopic property such as tensile strength is a daunt-
ing task because of the infinite number of shapes one may 
consider. One method of exploring the high dimensional 
phase space of shapes is with genetic algorithms (GAs) [19]. 
Jaeger et al. [20, 32, 33] utilized GAs to evolve a particle 
morphology in order to maximize packing fraction in dis-
crete element method (DEM) simulations [9]. Nonetheless, 
the technique was limited to clumps of spheres due to the 
limitations of traditional DEM. On the other hand, Makse 
et al developed a formula for estimating packing fraction 
and coordination number for arbitrary particle shapes by 
constructing the Voronoi volumes from sphere clusters [3]. 
Such an equation could be invaluable for use in topology 
optimization, as unlike simulations it can be quickly evalu-
ated. Nonetheless, it assumes maximum packing density, and 
may not be accurate when meta-stable states such as arches 
occur in samples.

A way to reduce the computational requirement of auto-
mated grain design is by finding a function mapping from 
grain shape to material-scale behavior that can be quickly 
evaluated. One can then invert this ‘forward’ mapping from 
morphology-to-behavior to obtain an ‘inverse’ mapping 
from behavior-to-morphology. Creating this ‘inverse’ map-
ping is highly non-trivial and non-unique but of great scien-
tific interest. In the last few years, such a mapping has been 
investigated for a multitude of shapes and behaviors using 
experiments and simulations, as analytical solutions for even 
simple shapes remain elusive. Commonly explored shapes 
in jammed particle simulations include spheres, cylinders, 

superballs, staples, ellipses and ellipsoids, sphere clusters, 
crosses, spherocylinders, tetrahedra, frustums, platonic sol-
ids, and realistically shaped grains—though for the latter 
there are few computational efforts due to technical limita-
tions [1, 2, 10, 15, 17, 18, 21, 29, 31, 40, 47]. In all such 
cases, material properties continuously vary with particle 
shape.

The above studies suggests that a continuous function 
exists mapping particle shape to characteristic mesoscopic 
properties like average coordination number and packing 
fraction. However, each study only considers a small ‘slice’ 
of the entire function’s domain. In this work, we demon-
strate a methodology for constructing the general mapping 
from shape to material properties by parameterizing particle 
shape, and finding relationships between the chosen parame-
ters and granular material properties. Tackling this herculean 
task is now possible due to recent technological advance-
ments. These being: (1) the level-set discrete element 
method (LS-DEM), a DEM which can efficiently simulate 
particles of arbitrary shape [25], (2) granular cloning, which 
allows the generation of particle shapes with user-specified 
properties [11], and (3) neural-network based generative 
models, which can dramatically reduce the dimension of 
high-dimensional phase spaces by leveraging non-linear pat-
terns in the data [12].

We first explore human chosen parameterizations of par-
ticle shape, and how these parameters affect packing frac-
tion � (ratio of solid to total area in a granular material) 
and coordination number Z (average number of grain-grain 
contacts per particle). In particular, we see how grain round-
ness, aspect ratio and convexity affect material properties. 
As these three parameters can not uniquely define a shape, 
we utilize a VAE to develop a 20-dimensional granular par-
ticle latent space. In such a space, each vector represents 
a unique particle shape. Finally, we demonstrate how such 
a latent space can be utilized for shape optimization, see 
Fig. 1. By attempting to define the shape of a particle with 
the minimum number of parameters, we ask: what is neces-
sary to define a morphology? In other words, what is shape?

This paper is organized as follows. First, the methods of 
generating unique particles shapes is detailed in 2. Next, 
the simulation engine and methods are explained in 3. The 
results are then presented and analyzed in 4, followed by the 
conclusion and suggestions for future work in 5.

2 � Particle generation methods

2.1 � Generation with genetic algorithms

To start, we choose to continuously vary the convexity C, 
roundness R and aspect ratio A of the particles as it is well 
documented that such properties have a significant effect 
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on material behavior [21, 46]. Thus, each shape generated 
can be represented as a point in this three-dimensional 
parameter space, with coordinates given by (R, C, A). We 
investigate whether these dimensions are sufficient for pre-
dicting the properties at the mesoscale, or if more dimen-
sions are required. These shape descriptors are defined for 
a given particle as follows:

where N is the number of corners on a particle, ri is the 
radius of curvature r of the ith corner, rmax is the radius of 
the largest circle that can fit entirely within the particle, a 
and ahull are, respectively, the area of the particle and the 
area of the convex hull of the shape and �1 ≤ �2 are the 
principal component magnitudes of the points on the sur-
face of the particle, see Fig. 1. Note all 3 parameters take 
values between 0 and 1, with 1 corresponding to the values 
for a disk.

In order to investigate how � and Z change with these 
three dimensions, it is necessary to generate a wide range 
of particle shapes covering the (R, C, A) space. Generating 
new particle shapes autonomously, or ‘granular cloning’, 
is an active area of research [22, 42, 48]. Most methods 
require an external repository of particle shapes which 
are used as a blueprint for new shapes. However, we wish 
to generate particles from shape descriptors alone. The 
method proposed in [11] allows one to do this. Here, a 

(1)R =

∑N

i=1

ri

N

rmax

(2)C =
ahull

a

(3)A =
�1

�2

GA morphs a particle’s shape until the grain matches the 
shape descriptors to a certain tolerance. Clearly, multiple 
realizations of particle shape may correspond to the same 
(R, C, A) value. Hence we generate 10 particle realizations 
for each point on a grid in (R, C, A) space, evenly spaced 
by 0.1, with R ∈ [0.2, 1.0] , C ∈ [0.7, 1.0] and A ∈ [0.2, 1.0] . 
We restrict our attention to C ≥ 0.7 which still leads to pro-
nounced nonconvexity (see Fig. 3) while ensuring that the 
genetic algorithm produces physically valid morphologies.

The engine used for the GE is python DEAP [14]. To 
summarize, the method deforms an ellipse to match a tar-
get set of morphological properties. In this case, the prop-
erties are a specified roundness, aspect ratio and convexity. 
The method begins by placing 8 equally spaced points 
along the perimeter of an ellipse, with the ellipse having 
the specified aspect ratio and area equal to 300. Then, a 
genetic algorithm perturbs the points until the morphologi-
cal properties of the particle are within a tolerance of the 
specified properties. By using 8 points uniformly distrib-
uted across the surface to build the particle, we have cho-
sen a ‘scale’ for the morphology of about particle diameter 
d/10. This is a common length scale for quantifying par-
ticle roundness [8].

The genetic algorithm consists of 3 steps: mutation, 
combination and selection. The algorithm begins with 50 
equivalent ellipses, or ‘individuals’. Random individu-
als are selected for mutation with probability 0.5. For 
individuals undergoing mutation, points on the particle 
boundary are selected with probability 0.5. In polar coor-
dinates, the radial component r of the particle is moved 
in the radial direction by a random number sampled from 
the Gaussian �r ∼ N(0.0, 1.0) and change in polar angle 
�� ∼ N(0.0, 0.05).

Next, the ‘cost’ of each individual is calculated for 
selection. The cost of an individual is given by

(a) (b) (c) (d)

Fig. 1   Overview of topology optimization framework. a Obtain 
diverse collection of particle shapes from GAs which match speci-
fied (R, C, A) values. b Parameters for calculating (R, C, A). c Cre-
ate continuous vector space of shapes with VAE. zL,i denotes the ith 
latent space vector, as described in Sect.  2.2. Sampling of shapes 

shown at evenly spaced vectors along a plane in latent space, with 
axes zL,3 and zL,4 . The plane is defined by S (Eq. 6). d Run simulation 
for each shape at grid points (black dots) in latent space and obtain 
material property (Z). Use interpolation or optimization to find opti-
mal particle shapes between grid points
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The subscript ‘target’ is the specified shape parameter value, 
and the squared difference is the squared error, a measure of 
the difference between the current individual and the target 
morphology. The fourth term in the cost function heavily 
penalizes the morphology for each corner with a normalized 
radius of curvature ri

rmax
 less than 0.08, thereby avoiding non-

physical sharp edges. The SI term is equal to 1 if the particle 
self-intersects, heavily penalizing this non-physical behav-
ior. The parameter is checked using the Bentley-Ottmann 
algorithm [5]. The BN term heavily penalizes ‘bottlenecks’ 
in the shape, i.e. when two points on opposite sides of the 
particles are squeezed close to one-another. It is equal to 1 
when two opposite points are within a distance 7 of one-
another. It is difficult to create consistent level sets from 
grains with bottlenecks. Minimizing this cost function pro-
duces a particle with the specified morphological parameters 
that is physical. In the selection step, pairs of individuals are 
randomly chosen, and the individual with a higher cost is 
eliminated. The remaining individuals are duplicated until 
the population size is back to 50.

Measuring particle roundness requires identifying cor-
ners on the particle at a relevant length scale. Given the 
points on the particle surface, the corners are identified as 
follows: First, a third-order spline is fit to the points. The 
spline is then smoothed, from which 500 ordered points on 
the smoothed particle surface are generated. The radius of 
curvature can be calculated at each of these points due to 
the smoothness of the spline. For each point, the radius of 
curvature of all points 20 ahead and behind are checked. 
If the radius of curvature of the current point is the mini-
mum out of all the checked points, it is considered a cor-
ner. The radius of the maximum sized circle that can be 
fit in the particle is easily calculated from the level set: 
rmax = |min(�)| , see Fig. 2.

Finally, in the combination step pairs of individuals are 
randomly selected with probability 0.2. A new individ-
ual, or ‘child’ is created by randomly swapping boundary 
points on both grains.

This entire processes is repeated for 500 ‘generations’, 
or until the minimum cost of an individual is below the tol-
erance � = 0.0005 . After convergence, the individual with 
minimum cost is taken to be the solution. The location 
of the points are saved, and the level set for the particle 
is automatically generated. If generation 500 is reached 
and convergence has not occurred, the algorithm selects 
a different combination of target parameters. Note that all 
parameters can be modifieid to genereate different classes 
of shapes.

(4)

cost = (C − Ctarget)
2 + (R − Rtarget)

2 + (A − Atarget)
2

+ 100

N∑

i=1

𝛿

(
ri

rmax
< 0.08

)
+ 100SI + 100BN

For each realization of an (R, C, A) point, a simulation is 
performed to generate a packing and subsequently �, Z are 
calculated. An example of a generated grain for each sam-
pled point in (R, C, A) space is given in Fig. 3.

2.2 � Generation with deep learning

While the classical, intuition based descriptors (R, C, A) can 
capture a significant amount of information about a particle’s 
shape, they are not sufficient to fully quantify grain morphol-
ogy. For instance, an infinite number of unique shapes could 

(a) (b)

Fig. 2   a Corners detected by corner detection algorithm, with nor-
malized radius of curvatures shown. b Points on the surface of a par-
ticle, with the grain’s level set � given as a heatmap

Fig. 3   Example of grains generated at grid points in R, C, A space. 
Empty boxes indicate the algorithm was unable to generate a particle 
with the prescribed (R, C, A) values. Each box represents a different 
convexity, with A as row and R as columns
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have the same (R, C, A) coordinate. The limitations of these 
descriptors can be seen in the results for � in Sect. 4 for high 
convexity and in Z for low convexity morphologies. Here, the 
dependence of � on roundness and aspect ratio is complicated, 
implying there may be additional dimensions necessary to 
fully classify the grains. Consequently, we pose the question: 
what is the minimum number of dimensions necessary to suf-
ficiently quantify 2D particle shape, in relation to its collective 
packing properties? Further, what are these dimensions?

Advances in machine learning offer tools for answering 
these questions. We utilize a VAE [36], which has recently 
been leveraged for generating unique and realistic granular 
particles [42]. The input to a VAE is an array of numbers, 
which in our case is the grey-values in a pixelated 64 × 64 
2D image of a particle. The array is acted on by a series of 
matrix operations and non-linear functions, referred to as 
‘dense’ layers. These operations include multiple convolu-
tions, a commonly used operation in networks learning with 
image data. The transformed data is then fed into two arrays: 
� and � . Both of these vectors are the same length d, which is 
a parameter chosen by the user. This first half of the network 
is dubbed an ‘encoder’, as it compresses the data from the 
original image into d dimensions. Next, a ‘sample’ z is chosen 
by sampling from the distribution z = 𝜇 + 𝜎 ⊙ 𝜖 , where � is a 
random standard normal variable sampled at evaluation time 
and ⊙ is the element-wise dot product. The second half of 
the network is a series of convolutions that reconstructs the 
original image from z. This section of the network is called 
the ‘decoder’. The loss function for the network is a measure-
ment of the difference between the input image and the recon-
structed image, and the similarity between the distribution of 
the training data in the latent space and a standard normal 
distribution. The parameters in the network are trained via 
back-propagation. Once trained, the network has learned how 
to compress the image into d dimensions such that the loss 
function is minimized.

The architecture of the encoder, which takes 64 × 64 
black and white (single channel) images as input is given in 
Table 1, while the decoder architecture is given in Table 2 

(Appendix). A general diagram of the architecture is dis-
played in Fig. 4.

The VAE parameters � and � , representing the weights con-
necting neurons in the encoder and decoder network respec-
tively, are tuned during training as to minimize the following 
loss function for each of the data points where xi is the ith 
training data point:

The first term is the ‘reconstruction loss’, and measures the 
difference between the input and the output image for data 
point xi , while the second term (Kullback-Leibler diver-
gence) encourages the distribution of data in the latent space 
� to be Gaussian. p and q represent probability distributions 
learned by the network. For details on all terms and deriva-
tion, see [12]. Code for variational autoencoder from [37].

We train a VAE on 10,000 unique images of particles 
generated by the genetic algorithm across a uniform sam-
pling in (R, C, A) space. The grains are rotated and translated 
such that the principal axis of the grain is horizontal, and 
the grain centroid is in the middle of the image. The grain 
is converted into a black and white image, with the particle 
being white and the outside the particle black. The image is 
then subdivided into 62 pixels horizontally and vertically, 
with two empty pixels used to pad the sides of the image. 
These images are then used to train the network. We find 
that d = 20 is the lowest value of d necessary for success-
ful reconstruction. Any lower, and the reconstruction loses 
too much structure when compared to the original image. 
Once trained, the encoder section of network can generate 2 
unique d-dimensional vectors, � and � , for any given particle 
shape. Likewise, for any sample vector z the decoder can 
generate a unique particle shape. The d dimensional vec-
tor space of z is a latent space, where each vector defines a 
unique grain.

With the VAE, we achieve the goal of finding a com-
plete set of dimensions for fully describing particle shape, 
such that the number of dimensions are minimized to avoid 

(5)li = −�
�∼q� (�|xi)[log(p�(�i|�))] + KL(q�(�|�i)||p(�))

Table 1   Architecture of encoder

Input is a 64 × 64 black and white image (single channel) of the particle. Output is the � vector and � vec-
tor of latent space size d, 20. From here a sample z can be drawn

Layer Operation Output dimension Kernel size Stride padding Activation function

1 2DConv (64, 33, 33) 4 2 2 ReLU
2 2DConv (128, 17, 17) 4 2 2 ReLU
3 2DConv (256, 9, 9) 4 2 2 ReLU
4 2DConv (512, 5, 5) 4 2 2 ReLU
6 2DConv (1024, 3, 3) 4 2 2 ReLU
7 Avg. pool (1024, 1) N/A N/A N/A None
8 Linear (2048, 1) N/A N/A N/A None
9 Linear (20, 1) N/A N/A N/A None
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redundancy. By discovering a function with this latent space 
as the domain, and mesoscale variables such as � as the 
range, we would have a means of quickly predicting the 
mechanical properties of granular materials with arbitrary 
shaped grains.

We compute a z for each particle in the training data. 
The data is then scaled and rotated to reduce remaining cor-
relations between the data points in the latent space using 
principal component analysis (PCA) [23]. The transformed 
z vectors are given by zL , with ith components zL,i . Each zL 
lives in the d-dimensional latent space, with basis vectors 
(b1, ..., bd) . It is found that outside of the range −4 ≤ zL,i ≤ 4 , 
corresponding particles tend to be non-physical, i.e. con-
taining disconnected regions. For computational tractability, 
only latent vectors in the somewhat arbitrary subspace S are 
simulated in this study, where:

However, the methods applied here are valid in any subspace 
of the latent space. S is chosen because of the high diversity 
of particle shapes defined by the space. A uniformly spaced 
2D grid is defined in S with grid spacing 0.8 between bounds 
−4 ≤ zL,3, zL,4 ≤ 4 . A particle is generated from each zL grid 
point for use in simulation. The particle shapes correspond-
ing to each grid point are displayed in Fig. 1.

(6)S = {(0,−4, zL,3, zL,4, 0, ..., 0) ∈ ℝ
20}

3 � Simulation methodology

In order to measure � , Z and any other mesoscopic quantity 
for a range of shapes, we leverage a specialized 2D DEM 
simulation. DEM was developed for disks that obey rigid 
body mechanics [9]. In DEM, disks are allowed to over-
lap by a very small amount. The contact force between two 
disks is a function of the overlap extent between two parti-
cles. Nonetheless, LS-DEM (level set DEM) allows DEM 
simulation of arbitrarily shaped grains, and thus is capable 
of simulating any physically possible shape created by the 
generative models.

LS-DEM [25] stores the location of a collection of points 
on the surface of the particle, in addition to the level set of 
each grain. The level set � for a given particle surface is a 
function defined in all of space, such that its value at a given 
point is the signed distance to the surface of the grain. � is 
positive outside the grain, and negative inside, pictured in 
Fig. 2. When the surface of one grain intersects another, 
the penetration extent is easily computed by looking up one 
particle’s level-set value at the location of the other particle’s 
surface points, and performing linear interpolation on the 
level-set value if necessary.

Each (R, C, A) simulation consists of 900 particles at 
a gas state, i.e. randomly distributed in an evenly spaced 
non-overlapping grid such that grains are not touching one-
another with uniformly distributed random velocity and rota-
tion. The horizontal and vertical grid spacing is 6 m, with 
15 particles per row. The initial speed is a randomly chosen 
number between − 20 and 20 ms−1 in a random direction, 
with 0 angular velocity. The initial conditions are chosen 
randomly in order to make sure the final sample is less 
dependent on initial conditions.

Each particle in the (R, C, A) simulation has the same 
area. Simulations for VAE generated grains contain 1,800 
particles, as it is found for very non-convex particles gener-
ated by the VAE the representative volume element (RVE) 
requires more grains (see below). Particles generated from 
the VAE are scaled such that each pixel edge length in the 
64 × 64 image is equal to 0.045 m. Particles are arranged 

Table 2   Architecture of decoder

Input is sample z of size (d,1), drawn from normal distribution with mean � and standard deviation � , 
obtained from encoder. Output is a 64 × 64 reconstruction of the original image

Layer Operation Output dimension Kernel size Stride Activation function

1 linear (1024,1) N/A N/A N/A
2 2DConvTranspose (512, 3, 3) 3 2 ReLU
3 2DConvTranspose (256, 7, 7) 3 2 ReLU
4 2DConvTranspose (128, 15, 15) 3 2 ReLU
5 2DConvTranspose (64, 31, 31) 3 2 ReLU
5 2DConvTranspose (64, 64) 4 2 Sigmoid

Fig. 4   Diagram of a VAE. On the left is the input, which is a pix-
elated image of a grain in this case. On the right is the reconstructed 
image that is output by the network. Note the network smooths the 
particle somewhat, representing a certain degree of lost information
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in a grid with the same spacing as in (R, C, A) simulations. 
Simulations parameters are given in Table 3.

The grains are left to fall under the influence of gravity 
until they reach a loosely packed jammed state. The simula-
tion is run until the system is at rest. The packing fraction, 
in 2D, is calculated for the jammed state by first performing 
a Voronoi tessellation on the points on the particles’ surface 
in order to calculate the area of the domain, then using the 
known area of the grains to calculate � for a given RVE. Z 
is computed by measuring the average number of grains a 
given particle is contacting.

Calculation of material properties such as � and Z 
requires defining a representative volume element (RVE), 
i.e. an area in the simulation domain over which these 
parameters can be found. The RVE size of a granular mate-
rial requires calibration. If the RVE is too small, it is not 
representative of the mesoscopic properties. However, too 
large of an RVE will include the rigid wall boundaries, 
which will skew results. We take a circle of radius D = 50 
m centered at the centroid of grain positions to be the RVE, 
from which Z and � are calculated for each simulation. The 
value of D = 50 is determined by testing for convergence in 
mesoscale properties, see appendix Sect. 6.2.

Each simulation is repeated 5 times, with the same par-
ticles but different initial velocities, positions and orienta-
tions. The average �, Z of these 5 simulations are recorded. 
Examples of simulations before and after pluviation are dis-
played in Fig. 5B.

4 � Results and analysis

4.1 � (R, C, A) simulations

� and Z measurements are given in Fig.  5A. The data 
exhibits multiple patterns. The most obvious trend is that 
decreasing convexity decreases both packing fraction and 

coordination number. This is also evident from Fig. 5B and 
comparing Fig. 6A, D, G and J: as convexity decreases, the 
porosity of the material increases substantially. This is due 
to contact occurring at corners of highly non-convex grains 
leading to empty space within the grain’s non-convex indent, 
or arches forming within the material around large voids 
(Fig. 6J) similar to cohesive granular materials [38].

For high convexity grains C = 1 , � gradually changes in 
the R, A plane, except for very low A, at which � rapidly 
decreases. The high values of � at (R,C,A) = (1.0, 1.0, 1.0) 
and (R,C,A) = (0.2, 1.0, 0.2) are due to the hexagonal-like 
(Fig. 6A) and tessellating (Fig. 6B) packings that occur with 
grain shapes near these locations, respectively.

Z is strongly affected by A for all C >= 0.7 . Elongated 
grains exhibit local nematic order by tending to pack side-
by-side (Fig. 6C, F, I and L). This packing is similar to what 
is observed with ellipses. So is the trend in Z: elongating the 
particles increases the average number of contacts. How-
ever, as convexity decreases, the elongated grains exhibit 
less orientational order and the trends in Z become more 
complex [18].

The patterns in � in the C = 0.9 , C = 0.8 and C = 0.7 
plane are similar: maxima is achieved in the (R, A) plane 
at (R,A) ≈ (0.7, 0.4) (Fig.  6E, H) for C = 0.8∕0.9 , and 
(R,A) ≈ (0.6, 0.3) for C = 0.7 (Fig. 6K). Interlocking is pre-
sent for both of these maxima, yet the prevalence decreases 
with decreasing convexity. Particles far from the maxima 
exhibit less interlocking and pack loosely, (Fig. 6D, G and 
J). As such, the sudden decrease in � as R is decreased for 
low convexities is related to loss of interlocking.

In general, the (R, C, A) basis is effective at categoriz-
ing this diverse collection of shapes. The function mapping 
(R, C, A) to Z and � appears smooth. Nonetheless, in the 
C = 1 plane the � values vary more non-smoothly. Further, 
the space is full of ‘holes’ where a particle shape could not 
be found. These observations imply additional dimensions 
may be necessary to quantify shape in a continuous and 

Table 3   Table of simulation 
parameters

Parameter (R, C, A) sims VAE sims

Box width lx (m) 108 64
Box height ly (m) 402 402
Particle area (m2) 6 Variable
Density (kg/m3) 2650 2650
Normal spring constant kn (kg/s2) 1011 1011

Tangential spring constant ks (kg/s2) 1011 1011

Coefficient of friction � 0.5 0.5
Normal coefficient of restitution Cn

res
0.4 0.4

Shear coefficient of restitution Cs

res
0.5 0.5

Number of unique grain shapes per simulation 10 1
Total number of grains 900 1800
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Fig. 5   a Average � , Z in R, C, A space. Top row: � values. Bottom 
row: Z values. Columns correspond to convexity, matching Fig.  3. 
White blocks are locations where there are too few points for interpo-

lation. b final state of two R, C, A simulations at (0.7, 1.0, 0.7) (top) 
and (0.3, 0.7, 0.2) (bottom)

(a) (d) (g) (j)

(k)(h)(e)(b)

(c) (f) (i) (l)

Fig. 6   Examples of pluviated packing configuration across (R, C, A) 
space. Corresponding (R, C, A) value for each packing given in top-
right corner. Particles exhibit hexagonal packing (a), tessellation (b), 

nematic ordering (c, f), interlocking (e, h, k), arching (j) and propen-
sity for corner contact (d, g, j)



What is shape? Characterizing particle morphology with genetic algorithms and deep generative…

1 3

Page 9 of 12      2 

complete sense. Exploring such additional coordinates is 
the subject of the next section.

4.2 � VAE‑generated particle simulations

For each particle on the uniformly spaced grid in S (see 
2.) a pluviation simulation of 1800 identical copies of the 
particle is carried out, as detailed in 3. The results for � 
and Z in the subspace S are given in Fig. 7. Unlike Fig. 5, 
the �,Z function is defined for all of S, as a shape is guar-
anteed to exist for any vector—though the probability of a 
consistent shape decreases outside the −4, 4 bounds. In S, 
the particle with the highest packing fraction is predicted to 
be in the top right, or the (4, 4) location. This corresponds 
with a relatively convex shape, see inset. Meanwhile, the 
particle with the maximum coordination number is around 
the (−1.5, 0.5) , matching the elongated ‘bar bell’ shape in 
Fig. 1—a stretched, lower aspect ratio shape. Both optimums 
are consistent with observations in Sect. 4.1. As neither of 
these particles were in the training data for the VAE, the 
program has ‘invented’ an entirely new shape for optimizing 
a material attribute.

This research has focused on the ‘forward’ problem of 
granular design: mapping particle shape to mesoscopic 
or bulk properties. That being said, these tools can be 
applied towards the ‘inverse’ property-to-bulk problem. 
With an approximate forward mapping from latent space 
vector to bulk property in hand, one can search the latent 
space for areas of optimal bulk properties such as yield 
stress. Once an area in latent space has been identified, 
LS-DEM simulations can be run using particles sampled 
from this area to achieve a finer sample of bulk proper-
ties. This process can be repeated for other candidate 
areas of the latent space, thereby performing topology 
optimization (see Fig. 1). This is similar to the method 
in [16], which performs optimization within the lower 
dimensional latent space to reduce the complexity of the 
problem.

5 � Conclusions

In this work, we have investigated mappings from param-
eterized spaces of particle shape to mesoscale material 
quantities, Z and � . We have shown how parameterizing 
morphology by roundness, sphericity and aspect ratio 
can successfully be used to predict material properties. In 
particular, we have found that � and Z continuously vary 
throughout the shape space due to intuitive changes in pack-
ing geometry characterized by tessellation, local nematic 
ordering, hexagonal packing, arching and interlocking. We 
have also outlined a method for fully and automatically 
parameterizing particle shape via VAEs.

In future work, the techniques developed can be easily 
extended to 3 dimensions. Future work should also consider 
larger collections of particles, such to further minimize the 
effects of wall boundaries. Next, our results have only con-
sidered pluvation-prepared samples. However, mesoscale 
properties in granular materials are highly dependent on 
initial conditions [43]. Thus, it would be useful to under-
stand how the � and Z values corresponding to a particu-
lar shape change with preparation method. For instance, 
particles could be compressed or tapped to achieve higher 
packing fractions. Also, it would be valuable to see how 
results change with frictionless grains as qualitatively dif-
ferent packing configurations may be achieved. Further, the 
methodologies presented can be applied to any mesoscale 
or bulk material property—including tensile strength and 
critical state parameters. This mapping could also be used 
in coarse grained data-driven models, where model param-
eters are learned from lower-scale simulations [24]. Addi-
tionally, it could facilitate the ‘engineering’ of a confined 
fluid’s thermodynamics [34]. Finally, our results suggest 
particle morphology can be fully characterized using a few 
number of variables. Exploring the meaning of the dimen-
sions chosen by the generative model could shed light on 
the nature of shape.

This methodology contains certain limitations. The 
genetic algorithm will not converge for certain morphologi-
cal parameters, leading to the ‘gaps’ in RCA space. Further, 
the genetic algorithm requires manual tuning, including 
mutation parameters and start conditions. The VAE over-
comes many of these limitations as it can learn to generate 
particle shapes with minimal hand-tuning. Nonetheless, it 
is difficult to control the output of the autoencoder to only 
output particles of a certain class, such as with a constant 
convexity or roundness.

Previous research into granular materials was limited by 
the types of shapes one could simulate or obtain experi-
mentally. Shape optimization of granular materials was 
limited to a small number of clustered of spheres, or relied 
upon theoretical results which may not always match DEM 

Fig. 7   Average � (a) and Z (b) measured for uniform square grid in 
S space where zi

L
 denotes the ith latent space vector (see Sect.  2.2) 

with interpolation between points. Particles close in latent space to 
maxima shown
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simulations. With these results, we open research avenues 
for exploring high-dimensional spaces of arbitrary grain 
shapes is LS-DEM simulations.

6 � Appendix

6.1 � Frictionless ellipse validation

We perform simulations of frictionless ellipses with a range 
of aspect ratios to validate our findings against previous 
results, see Fig. 8. Results are generally very similar, with � 
oscillating about 0.88 as the ellipse is elongated from a cir-
cle, followed by a decrease in  � that starts as A moves below 
0.5. The insensitivity of the packing fraction to particle elon-
gation in the aspect ratio range 0.5 to 1 in Fig.  8 differs from 
previous studies [13, 41] which observed a decrease in  � as 
an aspect ratio 1 is approached. However, these studies used 
bi-disperse particles to prevent crystallization, while in our 
simulations of identical, frictionless particles the tendency to 
crystallize keeps the packing fraction high. Indeed, we note 
that LS-DEM produces almost perfect hexagonal packing 
for frictionless circles (A = 1), with  � slightly below 0.9.

6.2 � Determination of RVE size

To discover the minimum RVE size for a given complete 
simulation, circles of increasing diameter D centered at the 
average of all the particles’ centroids are considered, where 
Di corresponds to the ith circle of increasing diameter in 
steps of 1 m. Zi is determined for the particles within each 
Di diameter circle. A moving average of Zi is computed by 

averaging Zi with Zi−1 and Zi+1 . Then, |Zi − Z| is calculated. 
This function quantifies the size of fluctuations in the value 
of Z as a function of D. As D is increased, this value is 
initially large due to the small RVE. However, the function 
oscillates about a smaller constant when D is sufficiently 
large enough to capture the general RVE behavior. As D 
is further increased, the RVE encompasses the boundary, 
and the value of the fluctuations suddenly change due to 
the boundaries’ effect. The optimal value of D is when the 
domain is large enough to minimize the size of the fluc-
tuations, but is minimally affected by the boundaries. This 
function of D becomes constant at about D = 50 m for the 
simulations, see Fig.  9. The convergence of |Zi − Z| for 
900 particles and 1800 for (R, C, A) and VAE simulations, 
respectively, in addition to the small variation in calculated 
� and Z from the simulations indicates that the number of 
grains used in the simulations is satisfactory.

6.3 � VAE parameters
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Fig. 8   Packing fraction of frictionless ellipses, comparing results 
from current study with Guises et al [18]

Fig. 9   a Finished simulation of 1800 identical particles with RVE of 
diameter D = 50 m bounds shown in blue. Axis ticks in m. b |Zi − Zi| 
as a function of D for 10 simulations, with values for each simula-
tion given by a unique color, see Sect. 3. Convergence begins at about 
D = 50 m. Values after D = 60 m are unreliable as the RVE is greater 
than the box size



What is shape? Characterizing particle morphology with genetic algorithms and deep generative…

1 3

Page 11 of 12      2 

References

	 1.	 An, X., Li, C., Yang, R., Zou, R., Yu, A.: Experimental study of 
the packing of mono-sized spheres subjected to one-dimensional 
vibration. Powder Technol. 196(1), 50–55 (2009)

	 2.	 Baker, J., Kudrolli, A.: Maximum and minimum stable random 
packings of platonic solids. Phys. Rev. E 82(6), 061304 (2010)

	 3.	 Baule, A., Makse, H.A.: Fundamental challenges in packing 
problems: from spherical to non-spherical particles. Soft Matter 
10(25), 4423–4429 (2014)

	 4.	 Behringer, R.P., Chakraborty, B.: The physics of jamming for 
granular materials: a review. Rep. Prog. Phys. 82(1), 012601 
(2018)

	 5.	 Bentley, J.L., Ottmann, T.A.: Algorithms for reporting and count-
ing geometric intersections. IEEE Trans. Comput. 28(09), 643–
647 (1979)

	 6.	 Brown, E., Rodenberg, N., Amend, J., Mozeika, A., Steltz, E., 
Zakin, M.R., Lipson, H., Jaeger, H.M.: Universal robotic gripper 
based on the jamming of granular material. Proc. Natl. Acad. Sci. 
107(44), 18809–18814 (2010)

	 7.	 Cheng, L., Bai, J., To, A.C.: Functionally graded lattice structure 
topology optimization for the design of additive manufactured 
components with stress constraints. Comput. Methods Appl. 
Mech. Eng. 344, 334–359 (2019)

	 8.	 Cho, G.-C., Dodds, J., Santamarina, J.C.: Particle shape effects on 
packing density, stiffness, and strength: natural and crushed sands. 
J. Geotechn. Geoenviron. Eng. 132(5), 591–602 (2006). https://​
doi.​org/​10.​1061/​(asce)​1090-​0241(2006)​132:​5(591)

	 9.	 Cundall, P.A., Strack, O.D.: A discrete numerical model for granu-
lar assemblies. Geotechnique 29(1), 47–65 (1979)

	10.	 de Graaf, J., van Roij, R., Dijkstra, M.: Dense regular packings of 
irregular nonconvex particles. Phys. Rev. Lett. 107(15), 155501 
(2011)

	11.	 de Macedo, R.B., Marshall, J.P., Andrade, J.E.: Granular object 
morphological generation with genetic algorithms for discrete ele-
ment simulations. Granular Matter 20(4), 1–12 (2018)

	12.	 Doersch, C.: Tutorial on variational autoencoders. arXiv preprint 
arXiv:​1606.​05908 (2016)

	13.	 Donev, A., Connelly, R., Stillinger, F.H., Torquato, S.: Undercon-
strained jammed packings of nonspherical hard particles: ellipses 
and ellipsoids. Phys. Rev. E 75(5), 051304 (2007)

	14.	 Fortin, F.A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M., 
Gagné, C.: DEAP: evolutionary algorithms made easy. J. Mach. 
Learn. Res. 13, 2171–2175 (2012)

	15.	 Gan, J., Yu, A.: Dem simulation of the packing of cylindrical 
particles. Granular Matter 22(1), 1–19 (2020)

	16.	 Gladstone, R.J., Nabian, M.A., Keshavarzzadeh, V., Meidani, H.: 
Robust topology optimization using variational autoencoders. 
arXiv preprint arXiv:​2107.​10661 (2021)

	17.	 Gravish, N., Franklin, S.V., Hu, D.L., Goldman, D.I.: Entangled 
granular media. Phys. Rev. Lett. 108(20), 208001 (2012)

	18.	 Guises, R., Xiang, J., Latham, J.-P., Munjiza, A.: Granular pack-
ing: numerical simulation and the characterisation of the effect of 
particle shape. Granular Matter 11(5), 281–292 (2009)

	19.	 Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)
	20.	 Jaeger, H.M., de Pablo, J.J.: Perspective: evolutionary design of 

granular media and block copolymer patterns. APL Mater. 4(5), 
053209 (2016)

	21.	 Jerves, A.X., Kawamoto, R.Y., Andrade, J.E.: Effects of grain 
morphology on critical state: a computational analysis. Acta Geo-
tech. 11(3), 493–503 (2016)

	22.	 Jerves, A.X., Kawamoto, R.Y., Andrade, J.E.: A geometry-based 
algorithm for cloning real grains. Granular Matter 19(2), 30 
(2017)

	23.	 Jolliffe, I.T., Cadima, J.: Principal component analysis: a review 
and recent developments. Philosoph. Trans. R. Soc. A Math. Phys. 
Eng. Sci. 374(2065), 20150202 (2016)

	24.	 Karapiperis, K., Stainier, L., Ortiz, M., Andrade, J.: Data-driven 
multiscale modeling in mechanics. J. Mech. Phys. Solids 147, 
104239 (2021)

	25.	 Kawamoto, R., Andò, E., Viggiani, G., Andrade, J.E.: Level set 
discrete element method for three-dimensional computations with 
triaxial case study. J. Mech. Phys. Solids 91, 1–13 (2016)

	26.	 Keller, S., Jaeger, H.M.: Aleatory architectures. Granular Matter 
18(2), 29 (2016)

	27.	 Kollmer, J.E., Lindauer, S.M., Daniels, K.E.: Granular materials in 
space exploration. In: Earth and Space 2016. American Society of 
Civil Engineers (2016). https://​doi.​org/​10.​1061/​97807​84479​971.​
021

	28.	 Kumar, S., Kochmann, D.M.: What machine learning can do for 
computational solid mechanics. arXiv preprint arXiv:​2109.​08419 
(2021)

	29.	 Li, S., Lu, P., Jin, W., Meng, L.: Quasi-random packing of tetra-
hedra. Soft Matter 9(39), 9298–9302 (2013)

	30.	 Makse, H.A., Johnson, D.L., Schwartz, L.M.: Packing of com-
pressible granular materials. Phys. Rev. Lett. 84(18), 4160 (2000)

	31.	 Meng, L., Lu, P., Li, S., Zhao, J., Li, T.: Shape and size effects on 
the packing density of binary spherocylinders. Powder Technol. 
228, 284–294 (2012)

	32.	 Miskin, M.Z., Jaeger, H.M.: Adapting granular materials through 
artificial evolution. Nat. Mater. 12(4), 326–331 (2013)

	33.	 Miskin, M.Z., Jaeger, H.M.: Evolving design rules for the inverse 
granular packing problem. Soft Matter 10(21), 3708–3715 (2014)

	34.	 Monfared, S., Zhou, T., Andrade, J.E., Ioannidou, K., Radjaï, F., 
Ulm, F.-J., Pellenq, R.J.-M.: Effect of confinement on capillary 
phase transition in granular aggregates. Phys. Rev. Lett. 125(25), 
255501 (2020)

	35.	 Oda, M., Iwashita, K.: Mechanics of Granular Materials. CRC 
Press, Florida (2020)

	36.	 Pu, Y., Gan, Z., Henao, R., Yuan, X., Li, C., Stevens, A., Carin, L.: 
Variational autoencoder for deep learning of images, labels and 
captions. Adv. Neural. Inf. Process. Syst. 29, 2352–2360 (2016)

	37.	 Rath, S. R.: Generating fictional celebrity faces using convolu-
tional variational autoencoder and pytorch, 2 2021. URL https://​
debug​gerca​fe.​com/​gener​ating-​ficti​onal-​celeb​rity-​faces-​using-​
convo​lutio​nal-​varia​tional-​autoe​ncoder-​and-​pytor​ch/

	38.	 Rognon, P., Roux, J.-N., Wolf, D., Naaïm, M., Chevoir, F.: Rheo-
physics of cohesive granular materials. EPL (Europhysics Letters) 
74(4), 644 (2006)

	39.	 Rosinha, I.P., Gernaey, K.V., Woodley, J.M., Krühne, U.: Topol-
ogy optimization for biocatalytic microreactor configurations. 
Comput. Aided Chem. Eng. 37, 1463–1468 (2015)

	40.	 Salerno, K.M., Bolintineanu, D.S., Grest, G.S., Lechman, J.B., 
Plimpton, S.J., Srivastava, I., Silbert, L.E.: Effect of shape and 
friction on the packing and flow of granular materials. Phys. Rev. 
E 98(5), 050901 (2018)

	41.	 Schreck, C.F., Xu, N., O’Hern, C.S.: A comparison of jamming 
behavior in systems composed of dimer-and ellipse-shaped parti-
cles. Soft Matter 6(13), 2960–2969 (2010)

	42.	 Shi, J.-J., Zhang, W., Wang, W., Sun, Y.-H., Xu, C.-Y., Zhu, H.-H., 
Sun, Z.-X.: Randomly generating three-dimensional realistic 
schistous sand particles using deep learning: variational autoen-
coder implementation. Eng. Geol. 291, 106235 (2021)

	43.	 Staron, L., Hinch, E.: The spreading of a granular mass: role of 
grain properties and initial conditions. Granular Matter 9(3), 
205–217 (2007)

	44.	 Wang, L., Chan, Y.-C., Ahmed, F., Liu, Z., Zhu, P., Chen, W.: 
Deep generative modeling for mechanistic-based learning and 

https://doi.org/10.1061/(asce)1090-0241(2006)132:5(591)
https://doi.org/10.1061/(asce)1090-0241(2006)132:5(591)
http://arxiv.org/abs/1606.05908
http://arxiv.org/abs/2107.10661
https://doi.org/10.1061/9780784479971.021
https://doi.org/10.1061/9780784479971.021
http://arxiv.org/abs/2109.08419
https://debuggercafe.com/generating-fictional-celebrity-faces-using-convolutional-variational-autoencoder-and-pytorch/
https://debuggercafe.com/generating-fictional-celebrity-faces-using-convolutional-variational-autoencoder-and-pytorch/
https://debuggercafe.com/generating-fictional-celebrity-faces-using-convolutional-variational-autoencoder-and-pytorch/


	 R. B. d. Macedo et al.

1 3

    2   Page 12 of 12

design of metamaterial systems. Comput. Methods Appl. Mech. 
Eng. 372, 113377 (2020)

	45.	 Wang, Y., Li, L., Hofmann, D., Andrade, J.E., Daraio, C.: 
Structured fabrics with tunable mechanical properties. Nature 
596(7871), 238–243 (2021)

	46.	 Yang, J., Luo, X.: Exploring the relationship between critical state 
and particle shape for granular materials. J. Mech. Phys. Solids 
84, 196–213 (2015)

	47.	 Zhao, J., Li, S., Lu, P., Meng, L., Li, T., Zhu, H.: Shape influences 
on the packing density of frustums. Powder Technol. 214(3), 500–
505 (2011)

	48.	 Zhou, B., Wang, J.: Generation of a realistic 3d sand assembly 
using x-ray micro-computed tomography and spherical harmonic-
based principal component analysis. Int. J. Numer. Anal. Meth. 
Geomech. 41(1), 93–109 (2017)

	49.	 Zhu, J., Zhou, H., Wang, C., Zhou, L., Yuan, S., Zhang, W.: A 
review of topology optimization for additive manufacturing: status 
and challenges. Chin. J. Aeronaut. 34(1), 91–110 (2020)

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.


	What is shape? Characterizing particle morphology with genetic algorithms and deep generative models
	Abstract
	1 Introduction
	2 Particle generation methods
	2.1 Generation with genetic algorithms
	2.2 Generation with deep learning

	3 Simulation methodology
	4 Results and analysis
	4.1 (R, C, A) simulations
	4.2 VAE-generated particle simulations

	5 Conclusions
	6 Appendix
	6.1 Frictionless ellipse validation
	6.2 Determination of RVE size
	6.3 VAE parameters

	Acknowledgements 
	References




